
Pairwise Exemplar Clustering

Yingzhen Yang1 Xinqi Chu1 Feng Liang2 Thomas S. Huang1

Department of Electrical and Computer Engineering1, Department of Statistics2

University of Illinois at Urbana-Champaign

Abstract

Exemplar-based clustering methods have been extensively
shown to be effective in many clustering problems. They
adaptively determine the number of clusters and hold the ap-
pealing advantage of not requiring the estimation of latent pa-
rameters, which is otherwise difficult in case of complicated
parametric model and high dimensionality of the data. How-
ever, modeling arbitrary underlying distribution of the data is
still difficult for existing exemplar-based clustering methods.
We present Pairwise Exemplar Clustering (PEC) to alleviate
this problem by modeling the underlying cluster distributions
more accurately with non-parametric kernel density estima-
tion. Interpreting the clusters as classes from a supervised
learning perspective, we search for an optimal partition of the
data that balances two quantities: 1 the misclassification rate
of the data partition for separating the clusters; 2 the sum of
within-cluster dissimilarities for controlling the cluster size.
The broadly used kernel form of cut turns out to be a special
case of our formulation. Moreover, we optimize the corre-
sponding objective function by a new efficient algorithm for
message computation in a pairwise MRF. Experimental re-
sults on synthetic and real data demonstrate the effectiveness
of our method.

Introduction
Clustering is an important data analysis method which par-
titions data space into a set of self-similar clusters. Repre-
sentative clustering methods include K-means which finds
a local minima of sum of with-cluster dissimilarities, spec-
tral clustering (Ng, Jordan, and Weiss 2001) which iden-
tifies clusters of more complex shapes lying on some low
dimensional manifolds, and statistical modeling of the data
by a mixture of parametric distribution (Fraley and Raftery
2002). Among them, exemplar-based clustering methods
such as Affinity Propagation (Frey and Dueck 2007) are ap-
pealing since they do not need to estimate latent parameters
while combining data partition and model selection for the
number of clusters in the same optimization scheme.

However, it is difficult for exemplar-based methods to
characterize arbitrary underlying distributions of the data.
For example, pairwise similarity measures are not enough
for Affinity Propagation to recover the structure of the data
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with a combinatorial optimization algorithm. Recent works
on exemplar-based clustering try to alleviate this problem
via various statistical modeling techniques. (Tarlow, Zemel,
and Frey 2008) imposed Dirichlet process priors on the dis-
tribution of cluster sizes, but such priors on the distribution
of cluster sizes are not always effective in revealing the un-
derlying distribution of the data itself. Both (Lashkari and
Golland 2007) and its accelerated version (Takahashi 2011)
fit a mixture of exponential family distributions to the data
and restrict the mean of the mixture components to the set
of data points, taking advantage of the exemplar finding. Al-
though they formulated a convex optimization problem by
taking only the weight of mixture components as variables,
the parametric assumption about the data distribution lim-
its the potential of their methods. On the other hand, non-
parametric clustering methods (Li, Ray, and Lindsay 2007;
Comaniciu and Meer 2002; Hinneburg and Gabriel 2007)
exhibit the power of kernel density estimators in model-
ing the data distribution and clustering. They are similar
in searching for the local modes of the kernel density and
grouping the data points that climb to nearby modes to-
gether, where a heuristic threshold for merging the modes is
always needed (Xu and II 2005). Nevertheless, these kernel
based methods lack a unified optimization scheme for both
grouping the data and choosing the number of clusters, so
that they cannot avoid the heuristic mode merging process.

Combining the advantages of kernel methods and
exemplar-based clustering scheme, we propose a new clus-
tering method, Pairwise Exemplar Clustering (PEC). The as-
sumption is that the given dissimilarities between data points
is their norm distances in Euclidean space. Compared to tra-
ditional exemplar-based clustering methods, PEC approxi-
mates the underlying cluster distributions more accurately
by kernel density estimation. Inspired by the connection be-
tween supervised learning and unsupervised clustering (Xu
et al. 2004; Gomes, Krause, and Perona 2010), we derive a
misclassification rate of any hypothetical data partition with
respect to nearest neighbor classifier. This misclassification
rate is a new measure to evaluate the separability of the cor-
responding clusters, and the widely used kernel form of cut
(Wu and Leahy 1993) becomes a special case of our formu-
lation under the new measure. We convert the optimization
of the new measure to a MAP problem in a pairwise MRF,
and design a new algorithm for efficient message computa-
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tion to greatly speedup the inference process in the pairwise
MRF.

The rest part of this paper is organized as follows. We
first introduce the misclassification rate of a data partition,
then build the objective function for clustering followed by
the optimization algorithm. After that, we demonstrate and
analyze the experimental results, and finally conclude the
paper.

The Proposed Pairwise Exemplar Clustering
Before formulating our clustering method, we introduce the
notations in the following formulation. Suppose the data
set X = (x1, x2, ...xN ) belongs to the D-dimensional
Euclidean space RD. Given their pairwise dissimilarities
[dij ]i,j=1:N , where dij is the norm distance between xi, xj ,
i.e. dij = ‖xi − xj‖, PEC associates each data point xi with
a cluster indicator ci (i ∈ {1, 2, ...N} , ci ∈ {1, 2, ...N}), in-
dicating that xi takes xci as the cluster exemplar. We define
c = {ci}Ni=1. Furthermore, our clustering algorithm parti-
tions X into Q disjoint clusters C = {Ci}Qi=1, and we can
get the partition C from cluster indicators c since all the data
points with the same cluster indicator form a cluster.

Misclassification Rate of Data Partition
To avoid the restrictions posed by parametric distributions,
we model the data by kernel density estimation. Given N
data points X = (x1, x2, ...xN ), and suppose they are i.i.d.
samples drawn from some distribution with an unknown
density function f , the variable bandwidth kernel density es-
timator at any point x is

f̂ (x) =
1

N

N∑
i=1

1

hDi
K

(
x− xi
hi

)
(1)

where we use the radially symmetric Gaussian kernel
K (x) ∝ exp

(
−‖x‖2

/
2
)

, and

hi = h0

(
λ̂
/
f̂0 (xi)

) 1
2

(2)

is the variable bandwidth at xi by the sample point estima-
tor (Abramson 1982) where h0 is a fixed bandwidth. Sug-
gested by (Silverman 1986), λ̂ is the geometric mean of{
f̂0 (xi)

}N
i=1

and f̂0 is chosen as the fixed bandwidth ker-
nel density estimator with h0. This setting for variable band-
width is known to reduce the bias while remaining the vari-
ance of the MSE of the kernel density estimator (Abramson
1982). We prefer variable bandwidth density estimator due
to its ability to model data with different scales. Thanks to
the radially symmetric kernel, we can compute the variable
bandwidth just by the given pairwise dissimilarities between
data points.

Similar to (Li, Ray, and Lindsay 2007), the density esti-
mate for cluster Cj , j ∈ {1, 2, ...Q} is

f̂j (x) =
1

|Cj |

N∑
i=1

1

hDi
K

(
x− xi
hi

)
I
Cj

(xi) (3)

where I is an indicator function. (3) is capable of describ-
ing much more complex cluster distributions than paramet-
ric statistical modeling (Terrell and Scott 1992). Since the
variable bandwidth {hi}Ni=1 can be estimated before cluster-
ing, f̂j is entirely determined by Cj .

If viewing clusters as classes, there is a natural con-
nection between clustering and multi-class classification
from a supervised learning perspective (Gomes, Krause,
and Perona 2010). For any hypothetical data partition
C, we have a corresponding classification model M =(
{fj , πj , Cj}Qj=1 , F

)
such that fj is the density estimator

for class Cj and fj = f̂j , πj is the weight of Cj , and F is
a classifier trained using the Q classes {Cj}Qj=1. We restrict
F to be nearest neighbor classifier since it does not make
any assumption about the distribution of the training data.
Note that the our classification model is built from hypothet-
ical data partition in an unsupervised manner rather than the
training data with ground truth labels. Moreover, in many
practical problems data points are generated from multiple
unobserved classes, so it is particulary important for a clus-
tering method to identify these underlying classes and assign
the data points to the corresponding unobserved classes they
come from. This problem is reduced to finding an optimal
classification model that well separate the classes in our set-
ting, and we prefer the data partition which minimizes the
misclassification rate defined below (Bishop 2006):
Definition 1. The misclassification rate of a classification
model M is

P̃ (M) =

Q∑
j=1

∫
⋃
i6=j
Ri
p (x,Cj) dx (4)

where p (x,Cj) is the joint distribution of the data x and
class Cj , and Ri is the decision region of class Ci deter-
mined by the classifier F .

The misclassification rate of a data partition C is that of
the classification model M corresponding to C. Clearly (4)
is dependent on the decision regions determined by the clas-
sifier F . Finding the exact decision regions for all possible
classifiers is prohibitively time consuming, so we aim to for-
mulate the decision regions compatible with all classifiers
instead. A conservative choice of Ri is Ri = Ci. How-
ever, with this choice (4) would yield 0 for any classifica-
tion model M . Inspired by the behavior of nearest neighbor
classifier (Mclachlan 2004) and in order to compute the mis-
classification rate more accurately, we extendRi from Ci to
the δ-cover of Ci, which results in a new decision regionRδi
defined as

Rδi =
⋃

xm∈Ci

B (xm, δm) (5)

B (xm, δm) is a D-dimensional ball with radius δm
(δm > 0) centered at xm , and Ri is infinitely close to Ci
when δm → 0 for all xm ∈ Ci. The idea behind the δ-
cover is that we can assign the unobserved data within the
ball B (xm, δm) to the same class as xm in case of nearest
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Figure 1: Two-class classification model with δ-cover

neighbor classifier, when the radius of the ball, δm, is small
enough. Since any two data points could be assigned to dif-
ferent classes, we are safe to choose δm as large as half of
the distance between xm and its nearest neighbor, that is,

0 < δm ≤
dmm∗

2
(6)

and m∗ is the nearest neighbor of m.
Combining all the decision regions where (6) holds

everywhere, we obtain a δ-cover of X , i.e. Bδ =

{B (xm, δm)}Nm=1. We refer to the δ-cover of X such that
δm = dmm∗/2 for any data point xm as nearest neighbor
δ-cover. We define the δ-misclassification rate of a classifi-
cation model M as the misclassification rate on the δ-cover
of X:

P̃δ (M)
∆
=

Q∑
j=1

∫
⋃
i6=j
Rδi
p (x,Cj) dx (7)

Figure 1 shows the two-class classification model il-
lustrating the δ-cover of X . We aim to minimize the δ-
misclassification rate (7) so as to well separate different
classes, the very objective of clustering. Although (7) is not
a closed-form due to the integral, its upper bound can be
obtained from Theorem 1.
Theorem 1. Given data points X = (x1, x2, ...xN ) and the
hypothetical partition C on X , let M be the corresponding
classification model, then for any δ-cover of X ,

P̃δ (M) ≤ c0
N

(
δmax

hmin

)D
ψδ (c) (8)

where

ψδ (c)
∆
=

N∑
m=1

N∑
l=1

(
K

(
xm − xl
hl

)
+
Gmlδm
hl

)
θlm (9)

θlm = I{cl 6=cm}, Gml is an upper bound for
‖∇K ((x− xl)/hl)‖ constrained within the ball
B (xm, δm) 1, c0 is a constant, hmin = min {hi}Ni=1

and δmax = max {δi}Ni=1.

1Note that all continuous kernels have bounded gradient within
a ball, and Gml ≤ e−0.5 for the radially symmetric Gaussian ker-
nel

The proof is shown in the appendix. We call ψδ the pair-
wise kernel density (PKD) term. According to (8), P̃δ (M)
is bounded by ψδ up to a constant scale for any fixed δ-cover
of X , so we can approximately minimize P̃δ (M) by mini-
mizing its upper bound ψδ , which is more tractable.

Relationship to cut
Furthermore, it is interesting to observe the connection be-
tween ψδ (c) and the widely used kernel form of cut for clus-
tering and segmentation (Wu and Leahy 1993). The cut de-
fined on graph G̃ (V,E) is:

cut (A,B) =
∑

i∈A,j∈B
W (i, j) (10)

and the literature broadly adopts the Gaussian kernel
function W (i, j) = exp

(
−‖xi − xj‖2

/
2h2
)

(xi and xj
are the feature vectors of node i and j), to represent the sim-
ilarity between i, j. The relationship between ψδ and cut is
described below:
Remark 1. If hi = h for i ∈ {1, 2, ...N} and W (i, j) =

K ((xi − xj)/h), when Graph G̃ is complete we have

cut (A,B) =
1

2
lim

δmax→0
ψδ (c) (11)

Therefore, the well-known kernel form of cut corresponds
to the upper bound for the misclassification rate on the de-
graded δ-cover of the data points, i.e. δmax → 0, in case
of fixed bandwidth and complete graph. In this special case
the decision regions comprises only the discrete data points.
We prefer the more general PKD term ψδ to cut, since ψδ is
the upper bound for the more accurate misclassification rate.
We use nearest neighbor δ-cover in practice, whose advan-
tage over the degraded δ-cover is shown in experiments.

The Objective Function for Clustering
The PKD term ψδ achieves its minimum 0 by grouping all
the data into a single cluster. To avoid such imbalanced par-
tition, we introduce the sum of within-cluster dissimilarities
term to control the size of clusters, and the cluster indicators

enable us to express it conveniently, i.e.
N∑
i=1

‖xi − xci‖
2. For

numerical stability, we take its Gaussian form, that is

u (c) =
N∑
i=1

ui (c) =
N∑
i=1

1− exp
(
−‖xi − xci‖

2
)

(12)

so that ui falls into [0, 1]. Moreover, it is important for
the exemplar based clustering to ensure the consistency of
the configuration of the resultant cluster indicators (Frey and
Dueck 2007). That is, a data point should be the cluster ex-
emplar of itself if it is taken as a cluster exemplar by another
data point, and formally as below:

A configuration of the cluster indicators c = {ci}Ni=1 of
data X is consistent iff cj = j when ci = j for any i, j ∈
1..N .
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Combining (12) and (9), the final objective function for
PEC is defined as

E (c) = u (c) + λ (ψδ (c) + ρ (c)) (13)

where
ψδ (c) =

∑
i<j

ψδij (ci, cj) (14)

,
ρ (c) =

∑
i<j

ρij (ci, cj)

ρij (ci, cj) =

{
∞ ci = j, cj 6= j or cj = i, ci 6= i
0 otherwise

We rewrite the PKD term ψδ in a pairwise form in (14).
Our goal is to find the optimal configuration of the cluster
indicators, i.e. c∗ = arg min

c
E (c). There are two terms in

the objective function: the pairwise term ψδ (c) that repre-
sents the upper bound for the misclassification rate of the
data partition corresponding to c, and the unary term u (c)
that controls the cluster size. The two terms are competing
in the sense that ψδ (c) tends to make all data points group
together while u (c) encourages each data point form its own
cluster, and λ is a balancing parameter. Therefore, the mini-
mization of (13) searches for the best trade off between the
two terms and adaptively determines the number of clusters
in a model selection manner.

Optimization by Accelerated Belief Propagation
Due to the form of (13), it is straightforward to construct
a pairwise Markov Random Field (MRF) representing the
unary and pairwise terms as the data likelihood and prior
respectively. The variables c are modeled as nodes and the
unary term and pairwise term in the objective function are
modeled as potential functions in the pairwise MRF. The
minimization of the objective function is then converted to
a MAP (Maximum a Posterior) problem on the pairwise
MRF. While there are various inference techniques on MRF
such as Iterated Conditional Model (Besag 1986), Simulated
Annealing (Kirkpatrick, Gelatt, and Vecchi 1983; Barnard
1989), and Graph Cut (Boykov, Veksler, and Zabih 2001;
Kolmogorov and Zabih 2004), we choose Max-Product Be-
lief Propagation (BP) (Weiss and Freeman 2001) due to its
satisfactory empirical performance and the speedup of in-
ference gained by the special form of the pairwise term of
the objective function. Max-Product BP is known to pro-
duce an exact MAP solution when the graph is a tree, and it
achieves satisfactory empirical results on graph with loops
(Sun, Zheng, and Shum 2003; Felzenszwalb and Hutten-
locher 2006).

The max-product belief propagation maximizes the pos-
terior in two steps:

Message Passing: It iteratively passes messages along
each edge according to

mt
ij (cj) = min

ci

(
M t−1
ij (ci) + ψδij (ci, cj) + ρij (ci, cj)

)
(15)

M t
ij (ci)

∆
=

∑
k∈N(i)\j

mt
ki (ci) + ui (ci)

where mt
ij is the message sent from node i to node j in iter-

ation t, N (i) is the set of neighbors of node i.
Obtaining the optimal label: After the message passing

converges or the maximal number of iterations is achieved,
the final belief for each node is

bi (ci) =
∑

k∈N(i)

mT
ki (ci) + ui (ci)

And the resultant optimal c∗i is c∗i = arg min
ci

bi (ci).

The speed bottleneck of Max-Product BP lies in the
message computation in (15). The direct computation of{
mt
ij (cj)

}N
cj=1

requires O
(
N2
)

time complexity. Ex-

ploiting the sparsity of the pairwise term (ψδij (ci, cj) +

ρij (ci, cj)) on each edge (i, j), where both ψδij and ρij are
binary-valued functions, we propose a new message compu-
tation algorithm to reduce the time complexity to O (N) by
Proposition 1. First we simplify (15) as below:

mt
ij (cj) =



min
ci

(
M t−1
ij (ci) + ψδij (ci, j)

)
cj = j

M t−1
ij (i) cj = i

min
ci 6=j

(
M t−1
ij (ci) + ψδij (ci, cj)

)
cj 6= i, j

(16)
Then we have

Proposition 1.
{
mt
ij (cj)

}N
cj=1

can be computed in O (N)

time for any fixed i, j, t

Proposition 1 suggests an efficient message computation
procedure in linear time, which reduces the time complex-
ity of LBP from O

(
TEN2

)
to O (TEN), where E is the

number of edges in the pairwise MRF and T is the number
of iterations of message passing. It significantly speeds up
the inference in our graphical model.

Experimental Results
Default Parameter Setting
This section demonstrates the performance of PEC on syn-
thetic and real data sets. We first introduce the default pa-
rameter setting for PEC. Note that the constructed pairwise
MRF is a complete graph with O

(
N2
)

edges. Due to the
Gaussian kernel for the weight of edges, we discard nearly
70 percents of the edges while retaining half of the total
edge weight for each node without hurting the performance.
The default value for h0 in (2) is h∗0, empirically set as the
variance of the pairwise dissimilarities between data points{
‖xi − xj‖i<j

}
, and the default value for the balancing pa-

rameter λ in the objective function (13) is 1. We use these
settings throughout all the experiments conducted.

Based on the objective function (13), increasing the bal-
ancing parameter λ or the initial fixed bandwidth h0 for ker-
nel density estimator will produce fewer clusters, and vice
versa. Therefore, we can perform a series of model selec-
tion by varying both λ and h0. We vary h0 by h0 = αh∗0,
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Table 1: Real data sets used in experiments
Iris Wine VC BT

# of instances 150 178 310 106
Dimension 4 13 6 9
# of classes 3 3 3 6

where α, called the bandwidth ratio, is a parameter control-
ling the kernel bandwidth. In the model selection process λ
varies between [0, 1] and the bandwidth ratio α varies be-
tween [0.2, 1.5] with step 0.1 and 0.05 respectively to pro-
duce different number of clusters, and this parameter setting
is fixed for all the data sets in our experiments.

Data Sets
We conduct experiments on two synthetic data sets and four
real data sets. For both synthetic data sets, we randomly gen-
erate 300 points in R2 whose distribution is a mixture of
5 Gaussians with equal weight and different scales. In the
first data set, The 5 components of the mixture Gaussians
are N ((−6.5 0) , 6I), N ((5 5.5) , 3I), N ((5 0) , 1.2I),
N ((5 − 5) , I) andN ((0 0) , 1.2I). The specified parame-
ters of the Gaussian components render a scenario where the
data exhibits large scale difference and the cluster centers
are relatively close to each other. We repeat the simulation
10 times. In the second data set, the means and covariance
matrices for the Gaussian components are randomly gener-
ated. The means for the 5 Gaussian components are gener-
ated from N ((−6 − 6) , I), N ((−6 6) , I), N ((6 6) , I),
N ((6 − 6) , I) and N ((0 0) , I) respectively. The covari-
ance matrices for the first four Gaussian components are
generated from W (I, 2), and the last covariance matrix is
generated fromW (2I, 2), whereW (Σ, d) indicates Wishart
distribution with covariance matrix Σ and d is the degree of
freedom. We sample the means and covariance matrices for
the 5 Gaussian components 3 times, and for each parameter
setting of the 5 Gaussians we generate the data 5 times.

We choose four real data sets from UCI repository
(A. Asuncion 2007), i.e. Iris, Wine, Vertebral Column (VC),
and Breast Tissue (BT), which are summarized in Table 1.

Evaluation Metric
We use the popular adjusted rand index (ARI) (Hubert and
Arabie 1985) to evaluate the performance of the clustering
methods. ARI is the adjusted-for-chance version of rand in-
dex, and it has been widely used as a measure of agree-
ment between two partitions. ARI varies from 1 for a perfect
match to 0 for an entire random data partition, and a higher
ARI indicates a better agreement between the partition ob-
tained from clustering methods and the ground truth parti-
tion. Given a set of S data points and two partitions of these
data points, i.e. U = {Ui}K1

i=1 and V = {Vj}K2

j=1, we denote
the number of common objects of cluster Ui and Vj as nij ,
namely nij = |Ui ∩ Vj |. Then ARI is defined as below:

ARI =
Index− ExpectedIndex

MaxIndex− ExpectedIndex

Table 2: Clustering result on the first synthetic data
method K-means SC GMM AP PEC

Avg. ARI 0.8307 0.7123 0.7847 0.6373 0.8636
SD 0.0560 0.0505 0.0621 0.0433 0.0234
AC - - - 11.3 5

Table 3: Clustering result on the second synthetic data
method K-means SC GMM AP PEC

Avg. ARI 0.8446 0.8710 0.9148 0.7548 0.9461
SD 0.0686 0.0564 0.0684 0.0992 0.0377
AC - - - 8.6667 5.0667

Index =

K1∑
i=1

K2∑
j=1

(
nij
2

)

ExpectedIndex =

K1∑
i=1

(
|Ui|
2

)
·
K2∑
j=1

(
|Vj |
2

)/(
S

2

)

MaxIndex =
1

2

K1∑
i=1

(
|Ui|
2

)
+

K2∑
j=1

(
|Vj |
2

)
Clustering on Synthetic Data
We compare PEC to K-means, spectral clustering (SC) (Ng,
Jordan, and Weiss 2001), Gaussian Mixture Model (GMM),
and Affinity Propagation (AP) (Frey and Dueck 2007). We
feed the ground truth number of clusters to K-means, SC
and GMM. We require AP and PEC to do model selection
only once with default parameter. The result for the two syn-
thetic data sets are shown in Table 2 and Table 3 respectively,
where Avg. ARI stands for average ARI and SD stands for
standard deviation of the ARI, AC stands for average num-
ber of clusters by model selection. PEC actually chooses the
correct number of clusters in all but one of the simulations,
and we observe that it achieves the highest average ARI. On
contrast AP tends to split data into a larger number clusters.
Although GMM makes a correct assumption about the un-
derlying distribution of the data, PEC is better than GMM
in both performance stability and average ARI, by model-
ing the multiscale data more accurately through the variable
bandwidth kernel density estimator.

Clustering on Real Data
We compare PEC to K-means, Gaussian Mixture Models
and spectral clustering (Ng, Jordan, and Weiss 2001) on the
four UCI data sets. The clustering results are shown in Fig-
ure 2, 3, 4 respectively. We plot the performance of the clus-
tering method versus the number of clusters. Since spectral
clustering is dependent on the kernel bandwidth, we run it
with two bandwidth choices. The first choice is the default
empirical one, where the bandwidth is set as 0.05 times the
maximal pairwise dissimilarities between data points. The
second choice is to set the bandwidth the same as h0, which
varies with respect to the number of clusters for the sake
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Figure 2: Clustering on UCI Iris data set and the comparison between nearest neighbor δ-cover and the degraded δ-cover

Figure 3: Clustering on UCI Wine data set and the comparison between nearest neighbor δ-cover and the degraded δ-cover

Figure 4: Clustering on UCI Vertebral Column and Breast Tissue data sets

of a fair comparison between PEC and spectral clustering.
We normalize the Wine and BT data (i.e. make each at-
tribute have unit variance) since some attributes have much
larger variance than other attributes in the two data sets. For

the clustering methods that depend on random initialization
(such as K-means), we run them 30 times and take the aver-
age performance. We observe that PEC constantly outper-
forms K-means, GMM and spectral clustering in case of
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Table 4: Comparison between AP and PEC
Data sets Iris Wine VC BT

AP 0.7296 0.7328 0.2937 0.2691
Preference -51.6843 -281.4668 -104320 -40.2999

PEC 0.6943 0.9366 0.3854 0.3465

Wine, VC and BT data sets. Note that PEC not only renders
comparable or better result when it chooses the ground truth
number of clusters, it also produces satisfactory ARI scores
over a range of the cluster numbers for all the four data sets.
This demonstrate the effectiveness of our new measure, i.e.
the misclassification rate of data partition, in sensibly sep-
arating the clusters and the ability of the employed kernel
density estimator to model the underlying data distributions.

Affinity Propagation (AP) controls the number of clusters
by a parameter called preference, and there is little theoret-
ical justification on the setting of the preference (Tarlow,
Zemel, and Frey 2008). The preference of AP needs to be
tuned separately for each data set, and AP does not offer a
way of generating different number of clusters by varying
its preference value over a small fixed range. In contrast, the
parameters of PEC are not sensitive to different data sets
and they vary within a relatively small and fixed range for
all the four data sets. In order to render a fair comparison we
show the clustering ARI of AP when its preference value is
tuned to produce the correct number of clusters in Table 4.
For each data set, we first estimate the lower bound and up-
per bound for the preference (AP chooses 1 or 2 clusters
and N − 1 or N clusters for such lower bound and upper
bound for its preference respectively), then we evenly sam-
ple 234 (the number of times PEC performs model selection)
preference values between its upper bound and lower bound,
and run AP with the sampled preference values. We record
the average performance and the average preference value
of AP when it chooses the correct number of clusters. We
observe that PEC still behaves favorably to AP for the Wine,
VC and BT data sets, and the preference of AP that gener-
ates correct number of clusters changes significantly across
different data sets.

For Iris and Wine we further show the performance com-
parison between nearest neighbor δ-cover and the degraded
δ-cover in the same framework of optimizing the objective
function (13), with respect to the bandwidth ratio. We ob-
serve that nearest neighbor δ-cover often improves the per-
formance compared to the degraded δ-cover, especially in
the Wine data set, and it never significantly hurts the per-
formance. We attribute this improvement to the fact that the
nearest neighbor δ-cover enables the PKD term ψδ to ap-
proximate the true misclassification rate of the data partition
more accurately.

Conclusion
We propose a new clustering method, Pairwise Exemplar
Clustering (PEC), to incorporate kernel methods into an
exemplar-based clustering scheme. PEC employs kernel
density estimation to model the underlying data distribu-
tions, and utilizes a new measure, i.e. misclassification rate

of data partition, to well separate clusters. An objective func-
tion is built based on the new measure, and the number of
clusters is determined by optimizing the objective function
through efficient message computation in a Pairwise MRF.
Experimental results show the effectiveness of our method
on various data sets.
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Appendix
Proof of Theorem 1.

P̃δ (M) =

Q∑
j=1

∫
⋃
i6=j
Rδi

p (x|Cj)πjdx

=

Q∑
j=1

∫
⋃
i6=j
Rδi

fj (x)πjdx

=

Q∑
j=1

∫
⋃
i6=j
Rδi

1

|Cj |

N∑
l=1

1

hDl
K

(
x− xl
hl

)
ICj (xl) ·

|Cj |
N

dx

=
1

N

Q∑
j=1

∑
xm /∈Cj

∑
xl∈Cj

∫
B(xm,δm)

1

hDl
K

(
x− xl
hl

)
dx

=
1

N

N∑
m=1

N∑
l=1

θlm

∫
B(xm,δm)

1

hDl
K

(
x− xl
hl

)
dx (17)

Due to the nonnegativity and differentiability of K, we
perform first order Taylor expansion for K and there exist a
x∗m ∈ B (xm, δm) such that

K

(
x− xl
hl

)
=

∣∣∣∣K (x− xlhl

)∣∣∣∣
≤ K

(
xm − xl
hl

)
+

1

hl

∥∥∥∥∇K (x∗m − xlhl

)∥∥∥∥ ‖(x− xm)‖

≤ K
(
xm − xl
hl

)
+
Gmlδm
hl

and it follows that∫
B(xm,δm)

1

hDl
K

(
x− xl
hl

)
dx

≤ c0δ
D
m

hDl

(
K

(
xm − xl
hl

)
+
Gmlδm
hl

)
(18)

where c0δDm is the volume of the ball with radius δm in D
dimensional space. Substitute (18) into (17), we have

P̃δ (M) =
1

N

N∑
m=1

N∑
l=1

θlm

∫
B(xm,δm)

1

hDl
K

(
x− xl
hl

)
dx

≤ c0
N

N∑
m=1

N∑
l=1

θlm
δDm
hDl

(
K

(
xm − xl
hl

)
+
Gmlδm
hl

)

≤ c0
N

(
δmax

hmin

)D
ψδ (c)
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Proof of Proposition 1: The computation of mt
ij (j) costs

O (N) time. For all cj 6= j, we compute

mt
ij (cj) = min

ci 6=j

(
M t−1
ij (ci) + ψδij (ci, cj)

)
, cj 6= j (19)

Since ψδij (ci, cj) ∝ θij is a Potts model potential
function, and both ci, cj range over a common label set

L
∆
= {1, 2, ...N} \ {j}, it is shown in (Felzenszwalb

and Huttenlocher 2006) that
{
mt
ij (cj)

}
cj∈L

can be com-
puted in O (N) time by distance transform. After that,
all
{
mt
ij (cj)

}
cj∈L

are correct except mt
ij (i) according to

(16). We then recompute mt
ij (i) by (16), which also re-

quires O (N) time. Therefore the entire computation of{
mt
ij (cj)

}N
cj=1

costs O (N) time.
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