
On the Sub-Optimality of Proximal Gradient Descent for ℓ0 Sparse
Approximation

Yingzhen Yang YYANG58@ILLINOIS.EDU

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Jianchao Yang JIANCHAO.YANG@SNAPCHAT.COM

Snapchat, Venice, CA 90291

Wei Han WEIHAN3@ILLINOIS.EDU

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Thomas. S. Huang T-HUANG1@ILLINOIS.EDU

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

We investigate the ℓ0 sparse approximation in
this paper, and propose a proximal gradient de-
scent method which obtains a sub-optimal solu-
tion to the nonconvex optimization of ℓ0 sparse
approximation in an iterative shrinkage manner.
Our analysis gives the gap between the sub-
optimal solution and the globally optimal solu-
tion for ℓ0 sparse approximation, as well as the
conditions in which the sub-optimal solution is
globally optimal. We also show the application
of our algorithm to data clustering with superior
results.

1. Introduction
In this paper, we consider the ℓ0 sparse approximation
problem, or the ℓ0 penalized Least Square Estimation
(LSE) problem below:

min
α∈IRn

L(α) = ∥x−Dα∥22 + λ∥α∥0 (1)

where x ∈ IRd is a signal in d-dimensional Euclidean s-
pace, D is the design matrix of dimension d × n which
is also called a dictionary with n atoms in the sparse cod-
ing literature. The goal of problem (1) is to approximately
represent signal x by the atoms of the dictionary D while
requiring the representation to be sparse. Due to the non-
convexity imposed by the ℓ0 norm, previous research works
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resort to solve its ℓ1 relaxation

min
α∈IRn

∥x−Dα∥22 + λ∥α∥1 (2)

(2) is convex and also known as Basis Pursuit Denois-
ing which can be solved efficiently by linear programming
or iterative shrinkage algorithms (Daubechies et al., 2004;
Elad, 2006; Bredies & Lorenz, 2008).

Albeit the convexity of (1), sparse representation meth-
ods such as (Mancera & Portilla, 2006; Bao et al., 2014)
that directly optimize objective function involving ℓ0-norm
demonstrate compelling performance compared to its ℓ1

norm counterpart. We use Proximal Gradient Descent
(PGD) to obtain a sub-optimal solution to (1) in an iterative
shrinkage manner with theoretical guarantee. Although a
similar Iterative Hard-Thresholding (IHT) algorithm is pro-
posed by Blumensath et al. (Blumensath & Davies, 2008),
we prove the bound for gap between the sub-optimal so-
lution and the globally optimal solution to (1). Moreover,
if the solution to proper ℓ1 sparse approximation problem
serves as the initialization for PGD, we present the condi-
tions in which the gap vanishes, i.e. the sub-optimal solu-
tion equals to the globally optimal solution. The assump-
tions made for our theoretical analysis are mostly in terms
of the sparse eigenvalues of the dictionary. To the best of
our knowledge, there are quite few results in this direction.
Our results establish the theoretical soundness of PGD for
ℓ0 sparse approximation, and suggest the merit of initial-
ization by the solution to the ℓ1 relaxation. In addition,
we apply our optimization algorithm to data clustering, and
the proposed ℓ0 sparse graph method achieves better results
than other competing methods.

Throughout this paper, we use bold letters for matrices and
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vectors, regular lower letter for scalars. The bold letter with
subscript indicates the corresponding element of a matrix
or vector, and ∥ · ∥p denote the ℓp-norm of a vector.

2. Proximal Gradient Descent for ℓ0 Sparse
Approximation

Solving the ℓ0 sparse approximation problem (1) exact-
ly is NP-hard, and it is impractical to seek for its glob-
ally optimal solution. The literature extensively resort-
s to approximate algorithms, such as Orthogonal Match-
ing Pursuit (Tropp, 2004), or that use surrogate functions
(Hyder & Mahata, 2009), for ℓ0 problems. In this section
we present an algorithm that employs PGD to optimize (1)
in an iterative shrinkage manner, and obtains a sub-optimal
solution with theoretical guarantee.

2.1. Algorithm

The dictionary D is normalized such that each column has
unit ℓ2-norm. In t-th iteration of PGD for t ≥ 1, gradient
descent is performed on the squared loss term of L(α), i.e.
Q(α) = ∥xi −Dα∥22, to obtain

α̃(t) = α(t−1) − 2

τs
(D⊤Dα(t−1) −D⊤D) (3)

where τ is any constant that is greater than 1. s is the
Lipschitz constant for the gradient of function Q(·), namely

∥∇Q(y)−∇Q(z)∥2 ≤ s∥y − z∥2, ∀y, z ∈ IRn (4)

α(t) is then the solution to the following ℓ0 regularized
problem which is also the proximal mapping:

α(t) = argmin
v∈IRn

τs

2
∥v − α̃(t)∥22 + λ∥v∥0 (5)

It can be verified that (5) has closed-form solution:

α(t) = h√
2λ
τs

(α̃(t)) (6)

where hθ is an element-wise hard thresholding operator:

[hθ(u)]j =

{
0 : |uj | < θ

uj : otherwise
, 1 ≤ j ≤ n

The iterations start from t = 1 and continue until the se-
quence {L(α(t))}t or {α(t)}t converges or maximum it-
eration number is achieved, then a sub-optimal solution is
obtained. Our optimization algorithm by PGD is described
in Algorithm 1. The time complexity of our iterative prox-
imal method is O(Mn2) where M is the number of iter-
ations (or maximum number of iterations) for the iterative
proximal method.

2.2. Theoretical Analysis

In this section we present the bound for the gap between
the sub-optimal solution by PGD in Algorithm 1 and the

Algorithm 1 Proximal Gradient Descent for ℓ0 Sparse Ap-
proximation (1)
Input:

The given signal x ∈ Rd, the dictionary D, the param-
eter λ for the weight of the ℓ0 norm, maximum itera-
tion number M , stopping threshold ε, the initialization
α(0).

1: Obtain the sub-optimal solution α̃ by the Proximal
Gradient Descent (PGD) method with (3) and (6) start-
ing from t = 1. The iteration terminates either {α(t)}t
or {L(α(t))}t converges under the threshold ε or max-
imum iteration number is achieved.

Output: Obtain the sub-optimal solution α̂.

globally optimal solution for the ℓ0 sparse approximation
problem (1). Under certain assumption on the sparse eigen-
values of the data D, we show that the sub-optimal solu-
tion by PGD is actually a critical point of L(α) in Lem-
ma 1, namely the sequence {α(t)}t converges to a critical
point of the objective (1). We then show that both this sub-
optimal solution and the globally optimal solution to (1)
are local solutions of a carefully designed capped-ℓ1 regu-
larized problem in Lemma 2. Based on (Zhang & Zhang,
2012) which shows the distance between different local so-
lutions to various sparse estimation problems including the
capped-ℓ1 problem, the bound for ℓ2-distance between the
sub-optimal solution and the globally optimal solution is p-
resented in Theorem 1, again under the assumption on the
sparse eigenvalues of D. We further show when the bound
vanishes in Theorem 2.

In the following analysis, we let βI denote the vector
formed by the elements of β with indices in I when β is
a vector, or matrix formed by columns of β with indices in
I when β is a matrix. Also, we let S = supp(α(0)) and
|S| = A. The definition of sparse eigenvalues and critical
points are defined below which is important for our analy-
sis.
Definition 1. (Sparse eigenvalues) The lower and upper
sparse eigenvalues of a matrix A are defined as

κ−(m) := min
∥u∥0≤m;∥u∥2=1

∥Au∥22 κ+(m) := max
∥u∥0≤m,∥u∥2=1

∥Au∥22

It is worthwhile mentioning that the sparse eigenvalues are
closely related to the Restricted Isometry Property (RIP)
(Candes & Tao, 2005) used frequently in the compressive
sensing literature. Typical RIP requires bounds such as
δτ+δ2τ+δ3τ < 1 or δ2τ <

√
2−1 (Cands, 2008) for stably

recovering the signal from measurements and τ is the spar-
sity of the signal, where δτ = max{κ+(τ)−1, 1−κ−(τ)}.
Similar to (Zhang & Zhang, 2012), we use conditions on
the sparse eigenvalues in this paper which are more general
than RIP in the sense of not requiring bounds in terms of
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δ to obtain theoretical results. In the following text, sparse
eigenvalues κ− and κ+ are for the dictionary D.

Definition 2. (Critical points) Given the non-convex func-
tion f : IRn → R ∪ {+∞} which is a proper and lower
semi-continuous function.

• for a given x ∈ domf , its Frechet subdifferential of f
at x, denoted by ∂̃f(x), is the set of all vectors u ∈
IRn which satisfy

lim sup
y ̸=x,y→x

f(y)− f(x)− ⟨u,y − x⟩
∥y − x∥ ≥ 0

• The limiting-subdifferential of f at x ∈ IRn, denoted
by written ∂f(x), is defined by

∂f(x) = {u ∈ IRn : ∃xk → x, f(xk) → f(x),

ũk ∈ ∂̃f(xk) → u}

The point x is a critical point of f if 0 ∈ ∂f(x).

If the dictionary D has certain positive lower sparse eigen-
value, Lemma 1 shows that the sequences {α(t)}t pro-
duced by PGD converges to a critical point of L(α), the
objective of the ℓ0 sparse approximation problem (1).

Lemma 1. Suppose κ−(A) > 0, then the sequence {α(t)}t
generated by PDG with (3) and (6) converges to a critical
point of L(α).

Denote the critical of L(α) by α̂ that the sequence {α(t)}t
converges to when the assumption of Lemma 1 holds, and
denote by α∗ the globally optimal solution to the ℓ0-SSC
problem (1). Also, we consider the following capped-ℓ1
regularized problem, which replaces the noncontinuous ℓ0-
norm with the continuous capped-ℓ1 regularization term R:

min
β∈IRn

Lcapped−ℓ1(β) = ∥xi −Dβ∥22 +R(β; b) (7)

where R(β; b) =
n∑

j=1

R(βj ; b), R(t; b) = λmin{|t|,b}
b for

some b > 0. It can be seen that R(t; b) approaches the
ℓ0-norm when b → 0+. Our following theoretical analysis
aims to obtain the gap between α̂ and α∗. For the sake of
this purpose, the definition of local solution and degree of
nonconvexity of a regularizer are necessary and presented
below.
Definition 3. (Local solution) A vector β̃ is a local solution
to the problem (7) if

∥2D⊤(Dβ̃ − xi) + Ṙ(β̃; b)∥2 = 0 (8)

where Ṙ(β̃; b) = [Ṙ(β̃1; b), Ṙ(β̃2; b), . . . , Ṙ(β̃n; b)]
⊤.

Note that in the above definition and the following tex-
t, Ṙ(t; b) can be chosen as any value between the right
differential ∂R

∂t (t+; b) (or Ṙ(t+; b)) and left differential
∂R
∂t (t−; b) (or Ṙ(t−; b)).

Definition 4. (Degree of Nonconvexity of a Regularizer)
For κ ≥ 0 and t ∈ IR, define

θ(t, κ) := sup
s
{−sgn(s− t)(Ṗ (s; b)− Ṗ (t; b))−κ|s− t|}

as the degree of nonconvexity for function P . If u =
(u1, . . . , un)

⊤ ∈ IRn, θ(u, κ) = [θ(u1, κ), . . . , θ(up, κ)].

Note that θ(t, κ) = 0 for convex function P .

Let Ŝ = supp(α̂), S∗ = supp(α∗), the following lemma
shows that both α̂ and α∗ are local solutions to the capped-
ℓ1 regularized problem (7).
Lemma 2. If

0 < b < min{min
j∈Ŝ

|α̂j |,
λ

maxj /∈Ŝ | ∂Q
∂αj

|α=α̂|
,

min
j∈S∗

|αj
∗|, λ

maxj /∈S∗ | ∂Q
∂αj

|α=α∗ |
} (9)

(if the denominator is 0, λ
0 is defined to be +∞ in the

above inequality), then both α̂ and α∗ are local solutions
to the capped-ℓ1 regularized problem (7).

Theorem 5 in (Zhang & Zhang, 2012) gives the estimation
on the distance between two local solutions of the capped-
ℓ1 regularized problem. Based on this result, Theorem 1
shows that under assumptions on the sparse eigenvalues of
D, the sub-optimal solution α̂ obtained by PGD has bound-
ed ℓ2-distance to α∗ which constitutes one of our main re-
sults in this paper.
Theorem 1. (Sub-optimal solution is close to the globally
optimal solution) Suppose κ−(A) > 0 and κ−(|Ŝ∪S∗|) >
κ > 0, and b is chosen according to (9) as in Lemma 2.
Then

∥D(α̂−α∗)∥22 ≤ 2κ−(|Ŝ ∪ S∗|)
(κ−(|Ŝ ∪ S∗|)− κ)2

(10)

(∑
j∈Ŝ

(max{0, λ
b
− κ|α̂j − b|})2 + |S∗ \ Ŝ|(max{0, λ

b
− κb})2

)
In addition,

∥(α̂−α∗)∥22 ≤ 2

(κ−(|Ŝ ∪ S∗|)− κ)2
(11)

(∑
j∈Ŝ

(max{0, λ
b
− κ|α̂j − b|})2 + |S∗ \ Ŝ|(max{0, λ

b
− κb})2

)

Proof. According to Lemma 2, both α̂ and α∗ are local so-
lutions to problem (7). By Theorem 5 in (Zhang & Zhang,
2012), we have

∥D(α̂−α∗)∥22 ≤ 2κ−(|Ŝ ∪ S∗|)
(κ−(|Ŝ ∪ S∗|)− κ)2

(
∥θ(|α̂Ŝ, κ)∥

2
2 (12)

+ |S∗ \ Ŝ|θ2(0+, κ)
)
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By the definition of θ,

θ(t, κ) = sup
s
{−sgn(s− t)(Ṙ(s; b)− Ṙ(t; b))− κ|s− t|}

Since t > b, it can be verified that θ(t, κ) = max{0, λ
b −

κ|t− b|}. Therefore,

∥θ(α̂Ŝ, κ)∥
2
2 =

∑
j∈Ŝ

(
θ(α̂j , κ)

)2
=

∑
j∈Ŝ

(max{0, λ
b
− κ|α̂j − b|})2

(13)

It can also be verified that

θ(0+, κ) = max{0, λ
b
− κb} (14)

So that (10) is proved. Let S
′

= Ŝ ∪ S∗, since
σmin(D

⊤
S′DS′ ) ≥ κ−(|Ŝ∪S∗|), so that ∥D(α̂−α∗)∥22 ≥

κ−(|Ŝ ∪ S∗|)∥(α̂−α∗)∥22. It follows that (11) holds.

Remark 1. If α̂ is sparse, we can expect that |Ŝ ∪ S∗| is
reasonably small, and a small |Ŝ ∪ S∗| often increases the
chance of a larger κ−(|Ŝ ∪ S∗|). Also note that the bound
for distance between the sub-optimal solution and the glob-
ally optimal solution presented in Theorem 1 does not re-
quire typical RIP conditions. Also, it is always too restric-
tive to assume the rows of D are i.i.d. randomly generated,
and in many practical cases the rows of D are correlated
(i.e. correlated features), wherein the probabilistic RIPless
theory is not applicable. Moreover, when λ

b − κ|α̂j − b|
for nonzero α̂j and λ

b − κb are no greater than 0, or they
are small positive numbers, the sub-optimal solution α̂ is
equal to or very close to the globally optimal solution.

Remark 1 illustrates the conditions in which the gap be-
tween α̂ and α∗ is small or even vanishing, where the s-
parsity of α̂ is preferred. Based on this remark, we ob-
serve that if all the nonzero elements of α̂ are positive and
λ
b − κb < 0, then the bound for the ℓ2-distance between α̂
and α∗ vanishes. In order to obtain a sparse sub-optimal
solution α̂ with all nonzero elements being positive, we
propose to use a positive sparse initialization α(0). The
following theorem shows that such α(0) can be obtained as
the solution to a proper ℓ1 sparse approximation problem.
Also, under the assumption of Theorem 1, the sub-optimal
solution obtained by the proposed PGD is in fact globally
optimal, i.e. α̂ = α∗, when λ is chosen from a certain
range.

Before stating the theorem, let

α̂ℓ1 = argmin
α∈IRn

∥x−Dα∥22 + λ∥α∥1

Denote the indices of positive elements of α̂ℓ1 by I+ =

{j : α̂ℓ1

j > 0}, and we can obtain a new dictionary D+

by flipping the sign of columns of D indexed by I+, i.e.
D+

I+ = DI+ , D−
I+{ = −D

I+{ .

Theorem 2. Let

α+ = argmin
α∈IRn

∥x−D+α∥22 + λ∥α∥1 (15)

then all the nonzero elements of α+ are positive. Sup-
pose the assumption in Theorem 1 holds, and α+ is used
as the initialization of PGD, i.e. α(0) = α+. If s >

max{2A, 2(1+λA)
λτ }, then the sub-optimal solution α̂ gen-

erated by PGD with (3) and (6) satisfies Ŝ ⊆ S where
S = supp(α(0)), indicating that α̂ is sparse.

Moreover, α̂j > 0 for any j ∈ Ŝ, i.e. all the nonzero el-
ements of α̂ are positive. It follows that when λ < κb2,
α̂ = α∗, namely the sub-optimal solution is also the glob-
ally optimal solution.

The detailed proofs of the theorems and lemmas in this pa-
per are included in the supplementary document upon re-
quest.

Table 1. Clustering Results on the Extended Yale Face
Database B. ℓ0-SG (ℓ0 sparse graph) is compared to SSC
(Elhamifar & Vidal, 2013), SMCE (Elhamifar & Vidal, 2011)
and SSC-OMP (Dyer et al., 2013) which are important subspace
and manifold based clustering method using sparse approxima-
tion, as well as KM (K-means) and SC (spectral clustering).

Measure KM SC SSC SMCE SSC-OMP ℓ0-SG
AC 0.0954 0.1077 0.7850 0.3293 0.6529 0.8480

NMI 0.1258 0.1485 0.7760 0.3812 0.7024 0.8612

3. Application to Data Clustering
In this section, we show the application of ℓ0 s-
parse approximation by the proposed PGD for ℓ0 sparse
graph based clustering. Given N data points X =
[x1, . . . ,xN ] ∈ IRd×N , ℓ0 sparse graph based clustering
method solves the following ℓ0 sparse approximation prob-
lem wherein the data X serves as the dictionary for each
1 ≤ i ≤ n: min

αi∈IRn,αi
i=0

∥xi −Xαi∥22 + λ∥αi∥0. αi is

the sparse code for xi, and the constraint αi
i = 0 is to avoid

the trivial solution. Then a sparse similarity graph with the

weighted adjacency matrix W set by Wij =
|αj

i |+|αi
j |

2 ,
and spectral clustering is performed on W to obtain the da-
ta clustering result. We show the superiority of our method
compared to other methods including those using different
kinds of sparse approximation in Table 1.

4. Conclusions
We propose to use proximal gradient descent to obtain a
sub-optimal solution to the ℓ0 sparse approximation prob-
lem. Our theoretical analysis renders the bound for the ℓ2-
distance between the sub-optimal solution and the globally
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optimal solution, and establishes the conditions in which
the sub-optimal solution is also the globally optimal so-
lution to the original ℓ0 sparse approximation problem.
Moreover, we apply our algorithm to data clustering and
demonstrate the compelling result of the proposed ℓ0 sparse
graph based clustering.
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and embedding. In NIPS, pp. 55–63, 2011.

Elhamifar, Ehsan and Vidal, René. Sparse subspace clustering:
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