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INTRODUCTION
1. Nonparametric Label Propagation (LP) has been proven

to be effective for semi-supervised learning problems, and
it predicts the labels for unlabeled data by a harmonic so-
lution of an energy minimization problem which encour-
ages local smoothness of the labels in accordance with the
similarity graph.

2. On the other hand, the success of LP algorithms highly de-
pends on the underlying similarity graph. Most similarity
graphs for LP are constructed empirically and the objec-
tive function over the similarity graphs is defined as sum
of the product of pairwise similarity and the squared label
difference.

3. We relate LP to a novel nonparametric maximum mar-
gin similarity framework with the concept of similar-
ity margin, and present a new semi-supervised learning
algorithm called Maximum Margin Similarity Graph
(MMSG). The conventional LP algorithm can be inter-
preted as a special case of our MMSG algorithm when the
separation parameter is sufficiently large.

4. By the sample-based similarity margin rather than the
expectation based margin, our framework leads to an
tractable optimization problem which is solved by the pro-
jected subgradient method.

FORMULATION
• Definitions:

The similarity function over IRd × IRd is defined as any
bounded pairwise function S : IRd × IRd → [−1, 1]. The
labeled data D = {xi, yi}ni=1 are drawn i.i.d. from some
distribution P on IRd×{−1, 1}. We consider binary classi-
fication in this paper, and the multi-class case can be han-
dled in the one-vs-all manner. The similarity margin of
the datum x ∈ IRd is defined as the difference of sum of
x’s similarity to the data with the same label as x, and the
sum of x’s similarity to the data with different label:

γx =
1

n

( ∑
j:yj=y(x)

S(x,xj)−
∑

j:yj 6=y(x)

S(x,xj)
)

(1)

• Theoretical Guarantee:
Intuitively, the similarity margin for each datum should
be large so as to separate different classes.

FORMULATION OF MAXIMUM MARGIN SIMILARITY
To facilitate optimization algorithms, the small similarity

margin is penalized by hinge loss. For the separation param-
eter γ > 0, the hinge loss of the similarity margins for the data
D is defined as

Hγ,D =
1

n

n∑
i=1

max{0, 1− γi
γ
} (2)

where γi = γxi is the similarity margin of xi. Theorem 1 shows
that with a high probability, there exists a linear classifier in the
transformed space with hinge loss bounded by Hγ,D.

Theorem 1 Given the data D = {xi, yi}ni=1, define the mapping
FD : IR

d → IRn as FD(x) = 1√
n

(
S(x,x1), S(x,x2), . . . , S(x,xn)

)
.

For δ1, δ2, δ3 > 0, with probability at least 1 − δ1 − δ2 − δ3
over the data D, there exists a linear classifier in the transformed
space induced by FD such that this classifier has hinge loss at most

H0 = Hγ,D +

√
2
n log n

δ1

γ +
√

2
nγ2 log

1
δ2

+ δ3(1 + 1
γ ) with respect

to the margin γ. Namely, there exists a vector β ∈ IRn such that
IE(x,y)∼P

[
max{0, 1− y〈β,FD(x)〉

γ }
]
≤ H0.

• Maximum Margin Similarity Graph for Semi-Supervised
Learning:
We propose Maximum Margin Similarity Graph for semi-
supervised learning, and MMSG minimizes the hinge
loss of the similarity margins by projected subgradient
method. The data X = {x1, . . . ,xl,xl+1, . . . ,xn} ⊆ IRd

are comprised of labeled and unlabeled set, and the first l
points have labels yi ∈ {−1, 1} for 1 ≤ i ≤ l. In the follow-
ing text, `i is the label of xi for i ∈ {1, . . . , n}, and `i = yi
for i ∈ {1, . . . , l}.

• The optimization problem of MMSG is presented below,
where the discreteness condition is relaxed so that ` takes
real values for unlabeled data:

min
`

H` =
1

n

n∑
i=1

max{0, 1− γi
γ
}

s.t. `i ∈ [−1, 1], i ∈ {1 + 1, . . . , n}
`i = yi, i ∈ {1, . . . , l}

FORMULATION CONTINUED

γi is rewritten as γi = 1
n

n∑
j=1

S(xi,xj)
(
1− 1

2 (`i − `j)
2
)

and it

is convex function of `. Note that when the separation param-

eter is sufficiently large (γ ≥ maxi{γi}), H` = 1 −
n∑
i=1

γi

nγ , and
the optimization problem is reduced to that of Label Propaga-
tion. In the iteration k ≥ 0 of the projected subgradient method,
we set `(k+1) = PC(`

(k) − ηkg(k)) where ηk is the learning rate,
g(k) ∈ IRn is the subgradient of H` at `(k):

g
(k)
t =

1

n2γ

(( n∑
j=1

S(xt,xj)(`
(k)
t − `

(k)
j )
)
1Iγt<γ+∑

i 6=t

S(xi,xt)(`
(k)
t − `

(k)
i )1Iγi<γ

)
, 1 ≤ t ≤ n

EXPERIMENTAL RESULTS
we conduct experiments on the UCI Ionosphere data set, and

the accuracy of LP and MMSG with respect to different labeled
set size are shown in the figure below. The bounded similarity
function S(u, v) = exp

(
− 1

0.03 (1−
uT v

‖u‖2‖v‖2 )
)
, is used throughout

our experiments. For each labeled set size, we perform 5 trials
randomly. We set the the separation parameter γ as the average
of {γi} using the labels produced by Label Propagation. It is
observed that the accuracy curves of MMSG and LP share the
same tendency with respect to the size of labeled set, and MMSG
always achieves better accuracy by minimizing the hinge loss of
the similarity margins
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