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and Internal Examples
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Abstract— Single image super-resolution (SR) aims to esti-
mate a high-resolution (HR) image from a low-resolution (LR)
input. Image priors are commonly learned to regularize the,
otherwise, seriously ill-posed SR problem, either using external
LR–HR pairs or internal similar patterns. We propose joint
SR to adaptively combine the advantages of both external and
internal SR methods. We define two loss functions using sparse
coding-based external examples, and epitomic matching based
on internal examples, as well as a corresponding adaptive weight
to automatically balance their contributions according to their
reconstruction errors. Extensive SR results demonstrate the
effectiveness of the proposed method over the existing state-of-
the-art methods, and is also verified by our subjective evaluation
study.

Index Terms— Super-resolution, example-based methods,
sparse coding, epitome.

I. INTRODUCTION

SUPER-RESOLUTION (SR) algorithms aim to construct-
ing a high-resolution (HR) image from one or multiple

low-resolution (LR) input frames [1]. This problem is
essentially ill-posed because much information is lost in the
HR to LR degradation process. Thus SR has to refer to
strong image priors, that range from the simplest analytical
smoothness assumptions, to more sophisticated statistical and
structural priors learned from natural images [2]–[5]. The
most popular single image SR methods rely on example-based
learning techniques. Classical example-based methods learn
the mapping between LR and HR image patches, from a large
and representative external set of image pairs, and is thus
denoted as external SR. Meanwhile, images generally pos-
sess a great amount of self-similarities; such a self-similarity
property motivates a series of internal SR methods. With
much progress being made, it is recognized that external and
internal SR methods each suffer from their certain drawbacks.
However, their complementary properties inspire us to propose
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the joint super-resolution (joint SR), that adaptively utilizes
both external and internal examples for the SR task. The
contributions of this paper are multi-fold:

• We propose joint SR exploiting both external and internal
examples, by defining an adaptive combination of differ-
ent loss functions.

• We apply epitomic matching [6] to enforce self-similarity
in SR. Compared the the local nearest neighbor (NN)
matching adopted in [5], epitomic matching features more
robustness to outlier features, as well as the ability to
perform efficient non-local searching.

• We carry out a human subjective evaluation survey to
evaluate SR result quality based on visual perception,
among several state-of-the-art methods.

II. A MOTIVATION STUDY OF JOINT SR

A. Related Work

The joint utilization of both external and internal exam-
ples has been most studied for image denoising [17].
Mosseri et al. [18] first proposed that some image patches
inherently prefer internal examples for denoising, whereas
other patches inherently prefer external denoising. Such a pref-
erence is in essence the tradeoff between noise-fitting versus
signal-fitting. Burger et al. [16] proposed a learning-based
approach that automatically combines denoising results from
an internal and an external method. The learned combining
strategy outperforms both internal and external approaches
across a wide range of images, being closer to theoretical
bounds.

In SR literature, while the most popular methods are based
on either external or internal similarities, there have been
limited efforts to utilize one to regularize the other. The authors
in [19] incorporated both a local autoregressive (AR) model
and a nonlocal self-similarity regularization term, into the
sparse representation framework, weighted by constant coeffi-
cients. Yang et al. [20] learned the (approximated) nonlinear
SR mapping function from a collection of external images
with the help of in-place self-similarity. More recently, an
explicitly joint model is put forward in [24], including two loss
functions by sparse coding and local scale invariance, bound
by an indicator function to decide which loss function will
work for each patch of the input image. Despite the existing
efforts, there is little understanding on how the external and
internal examples interact with each other in SR, how to
judge the external versus internal preference for each patch,
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and how to make them collaborate towards an overall
optimized performance. [21] further investigated the utilization
of self-similarity into deep learning-based SR.

External SR methods use a universal set of example
patches to predict the missing (high-frequency) informa-
tion for the HR image. In [7], during the training phase,
LR-HR patch pairs are collected. Then in the test phase, each
input LR patch is found with a nearest neighbor (NN) match
in the LR patch pool, and its corresponding HR patch is
selected as the output. It is further formulated as a kernel
ridge regression (KRR) in [8]. More recently, a popular class
of external SR methods are associated with the sparse coding
technique [9], [10]. The patches of a natural image can
be represented as a sparse linear combination of elements
within a redundant pre-trained dictionary. Following this prin-
ciple, the advanced coupled sparse coding is further proposed
in [4] and [10]. External SR methods are known for their
capabilities to produce plausible image appearances. However,
there is no guarantee that an arbitrary input patch can be well
matched or represented by the external dataset of limited size.
When dealing with some unique features that rarely appear in
the given dataset, external SR methods are prone to produce
either noise or oversmoothness [11]. It constitutes the inherent
problem of any external SR method with a finite-size training
set [12].

Internal SR methods search for example patches from
the input image itself, based on the fact that patches often
tend to recur within the image [11], [13], [14], or across
different image scales [5]. Although internal examples pro-
vide a limited number of references, they are very relevant
to the input image. However, this type of approach has a
limited performance, especially for irregular patches without
any discernible repeating pattern [15]. Due to the insufficient
patch pairs, the mismatches of internal examples often lead
to more visual artifacts. In addition, epitome was proposed
in [6], [25], and [26] to summarize both local and
non-local similar patches and reduces the artifacts caused
by neighborhood matching. We apply epitome as an internal
SR technique in this paper, and evidence its advantages by our
experiments.

B. Comparing External and Internal SR Methods

Both external and internal SR methods have different
advantages and drawbacks. See Fig. 1 for a few specific
examples. The first two rows of images are cropped from the
3× SR results of the Train image, and the last two rows
from the 4× SR results of the Kid image. Each row of
images are cropped from the same spatial location of the
groundtruth image, the SR result by the external method [4],
and the SR result by the internal method [5], respectively.
In the first row, the top contour of carriage (c) contains
noticeable structural deformations, and the numbers “425”
are more blurred than those in (b). That is because the
numbers can more easily find counterparts or similar structure
components from an external dataset; but within the same
image, there are few recurring patterns that look visually
similar to the numbers. Internal examples generate sharper

SR results in images (f) than (e), since the bricks repeat their
own patterns frequently, and thus the local neighborhood is
rich in internal examples. Another winning case of external
examples is between (h) and (i), as in the latter, inconsistent
artifacts along the eyelid and around the eyeball are obvious.
Because the eye region is composed of complex curves and
fine structures, external examples encompass more suitable
reference patches and perform a more natural-looking SR.
In contrast, the repeating sweater textures lead to a sharper
SR in (l) than that in (k). The PSNR and SSIM [27] results
are also calculated for all, which further validate our visual
observations.

These comparisons display the generally different, even
complementary behaviors of external and internal SR. Based
on the observations, we expect that the external examples
contribute to visually pleasant SR results for smooth regions as
well as some irregular structures that barely recur in the input.
Meanwhile, internal examples serve as a powerful source
to reproduce unique and singular features that rarely appear
externally but repeat in the input image (or its different scales).
Note that similar arguments have been validated statistically
in the the image denoising literature [16].

III. A JOINT SR MODEL

Let X denote the HR image to be estimated from the
LR input Y. Xi j and Yi j stand for the (i, j)-th (i, j = 1, 2 . . .)
patch from X and Y, respectively. Considering almost all
SR methods work on patches, we define two loss functions
�G(·) and �I(·) in a patch-wise manner, which enforce the
external and internal similarities, respectively. While one intu-
itive idea is to minimize a weighted combination of the
two loss functions, a patch-wise (adaptive) weight ω(·) is
needed to balance them. We hereby write our proposed joint
SR in the general form:

min
Xi j ,�G,�I

�G(Xi j ,�G |Yi j )+ω(�G,�I |Yi j )�I(Xi j ,�I |Yi j ).

(1)

�G and �I are the latent representations of Xi j over the
spaces of external and self examples, respectively. The form
f (Xi j ,�|Yi j ), f being �G , �I or ω, represents the function
dependent on variables Xi j and � (�G or �I ), with Yi j known
(we omit Yi j in all formulations hereinafter). We will discuss
each component in (1) next.

One specific form of joint SR will be discussed in this
paper. However, note that with different choices of �G(·),
�I(·), and ω(·), a variety of methods can be accommodated in
the framework. For example, if we set �G(·) as the (adaptively
reweighted) sparse coding term, while choosing �I(·) equiv-
alent to the two local and non-local similarity based terms,
then (1) becomes the model proposed in [19], with ω(·) being
some empirically chosen constants.

A. Sparse Coding for External Examples

The HR and LR patch spaces {Xi j } and {Yi j } are assumed
to be tied by some mapping function. With a well-trained
coupled dictionary pair (Dh, Dl) (see [4] for details on training
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Fig. 1. Visual comparisons of both external and internal SR methods on different image local regions. The PSNR and SSIM values are also calculated and
reported. (a) Train, the groundtruth of carriage region. (b) Train, carriage region by [4] PSNR = 24.91 dB, SSIM = 0.7915. (c) Train, carriage region by [5]
PSNR = 24.13 dB, SSIM = 0.8085. (d) Train, the groundtruth of brick region. (e) Train, brick region by [4] PSNR = 18.84 dB, SSIM = 0.6576. (f) Train,
brick region by [5] PSNR = 19.78 dB, SSIM = 0.7037. (g) Kid, the groundtruth of left eye region. (h) Kid, left eye region by [4] PSNR = 22.43 dB,
SSIM = 0.6286. (i) Kid, left eye region by [5] PSNR = 22.18 dB, SSIM = 0.5993. (j) Kid, the groundtruth of sweater region. (k) Kid, sweater region by [4]
PSNR = 24.16 dB, SSIM = 0.5444. (l) Kid, sweater region by [5] PSNR = 24.45 dB, SSIM = 0.6018.

a coupled dictionary pair), the coupled sparse coding [10]
assumes that (Xi j , Yi j ) tends to admit a common sparse
representation ai j . Since X is unknown, Yang et al. [10]
suggest to first infer the sparse code aL

i j of Yi j with respect
to Dl, and then use it as an approximation of aH

i j (the sparse
code of Xi j with respect to Dh), to recover Xi j ≈ DhaL

i j .
We set �G = ai j and constitute the loss function enforcing
external similarity:

�G(Xi j , ai j ) = λ||ai j ||1 + ||Dlai j − Yi j ||2F
+||Dhai j − Xi j ||2F . (2)

B. Epitomic Matching for Internal Examples

1) The High Frequency Transfer Scheme: Based on the
observation that singular features like edges and corners in
small patches tend to repeat almost identically across different

image scales, Freedman and Fattal [5] applied the “high
frequency transfer” method to searching the high-frequency
component for a target HR patch, by NN patch matching
across scales. Defining a linear interpolation operator U and
a downsampling operator D, for the input LR image Y, we
first obtain its initial upsampled image X

′E = U(Y), and a
smoothed input image Y′ = D(U(Y)). Given the smoothed
patch X

′E
i j , the missing high-frequency band of each unknown

patch XE
i j is predicted by first solving a NN matching (3):

(m, n) = arg min
(m,n)∈Wi j

‖Y′
mn − X

′E
i j ‖2

F , (3)

where Wi j is defined as a small local searching win-
dow on image Y′. We could also simply express it as
(m, n) = fN N (X

′E
i j , Y′). With the co-located patch Ymn
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from Y, the high-frequency band Ymn − Y′
mn is pasted

onto X
′E
i j , i.e., XE

i j = X
′E
i j + Ymn − Y′

mn .
2) EPI (Epitomic Matching for Internal SR): The matching

of X
′E
i j over the smoothed input image Y′ makes the core

step of the high frequency transfer scheme. However, the
performance of NN matching (3) is degraded with the presence
of noise and outliers. Moreover, the NN matching in [5] is
restricted to a local window for efficiency, which potentially
accounts for some rigid artifacts.

Instead, we propose epitomic matching to replace
NN matching in the above frequency transfer scheme. As a
generative model, epitome [26], [28] summarizes a large set
of raw image patches into a condensed representation in a way
similar to Gaussian Mixture Models. We first learn an epitome
eY′ from Y′, and then match each X

′ E
i j over eY′ rather than Y′

directly. Assume (m, n) = fept (X
′E
i j , eY′), where fept denotes

the procedure of epitomic matching by eY′ . It then follows
the same way as in [5]: XE

i j = X
′E
i j + Ymn − Y′

mn: the only
difference here is the replacement of fN N with fept . The high-
frequency transfer scheme equipped with epitomic matching
can thus be applied to SR by itself as well, named EPI for
short, which will be included in our experiments in Section 4
and compared to the method using NN matching in [5].

Since eY′ summarizes the patches of the entire Y′,
the proposed epitomic matching benefits from non-local
patch matching. In the absence of self-similar patches in
the local neighborhood, epitomic matching weights refer to
non-local matches, thereby effectively reducing the artifacts
arising from local matching [5] in a restricted small neighbor-
hood. In addition, note that each epitome patch summarizes
a batch of similar raw patches in Y′. For any patch Y′

i j that
contains certain noise or outliers in Y′, its has a small posterior
and thus tends not be selected as candidate matches for X

′E
i j ,

improving the robustness of matching. The algorithm details
of epitomic matching are included in Appendix.

Moreover, we can also incorporate Nearest Neighbor (NN)
matching to our epitomic matching, leading to a enhanced
patch matching scheme that features both non-local (by epit-
ome) and local (by NN) matching. Suppose the high frequency
components obtained by epitomic matching and NN matching
for patch X

′E
i j are Hi j,e and Hi j,NN respectively, we use a

smart weighted average of the two as the final high frequency
component Hi j :

Hi j = wHi j,e + (1 − w)Hi j,NN (4)

where the weight w = p(T ∗
i j |X

′E
i j , e) denotes the probability

of the most probable hidden mapping given the patch X
′E
i j .

A higher w indicates that the patch X
′E
i j is more likely

to have a reliable match by epitomic matching (with the
probability measured through the corresponding most probable
hidden mapping), thereby a larger weight is associated with
the epitomic matching, and vice versa. This is the practical
implementation of EPI that we used in the paper.

Finally, we let �I = XE
i j and define

�I(Xi j , XE
i j ) = ||Xi j − XE

i j ||2F , (5)

where XE
i j is the internal SR result by epitomic matching.

C. Learning the Adaptive Weights

In [18], Mosseri et.al. showed that the internal versus
external preference is tightly related to the Signal-to-Noise-
Ratio (SNR) estimate of each patch. Inspired by that finding,
we could seek similar definitions of “noise” in SR based on
the latent representation errors. The external noise is defined
by the residual of sparse coding

Ng(ai j ) = ||Dlai j − Yi j ||2F . (6)

Meanwhile, the internal noise finds its counterpart definition
by the epitomic matching error within f pet :

Ni (XE
i j ) = ||Y′

mn − X
′ E
i j ||2F , (7)

where Y′
mn is the matching patch in Y′ for X

′E
i j .

Usually, the two “noises” are on the same magni-
tude level, which aligns with the fact that external- and
internal-examples will have similar performances on many
(such as homogenous regions). However, there do exist
patches where the two have significant differences in per-
formances, as shown in Fig. 1, which means the patch has
a strong preference toward one of them. In such cases, the
“preferred” term needs to be sufficiently emphasized. We thus
construct the following patch-wise adaptive weight (p is the
hyperparameter):

ω(αi j , XE
i j ) = exp(p · [Ng(ai j ) − Ni (XE

i j )]). (8)

When the internal noise becomes larger, the weight decays
quickly to ensure that external similarity dominates, and vice
versa.

D. Optimization

Directly solving (1) is very complex due to the its high
nonlinearity and entanglement among all variables. Instead,
we follow the coordinate descent fashion [29] and solve the
following three sub-problems iteratively.

1) ai j -Subproblem: Fixing Xi j and XE
i j , we have the fol-

lowing minimization w.r.t αi j

min
ai j

λ||ai j ||1 + ||Dlai j − Yi j ||2F + ||Dhai j − Xi j ||2F
+ [�I(Xi j , XE

i j ) · exp(−p · Ni (XE
i j ))]·exp(p · Ng(ai j )). (9)

The major bottleneck of exactly solving (9) lies in the last
exponential term. We let a0

i j denote the ai j value solved in
the last iteration. We then apply first-order Taylor expansion
to the last term of the objective in (9), with regard to
Ng(αi j ) at αi j = α0

i j , and solve the approximated problem as
follows:

min
ai j

λ||ai j ||1 + (1 + C)||Dlai j − Yi j ||2F + ||Dhai j − Xi j ||2F ,

(10)

where C is the constant coefficient:

C = [�I(Xi j , XE
i j ) · exp(−p · Ni (XE

i j )] · [p · exp(p · Ng(a0
i j )]

= p�I(Xi j , XE
i j ) · ω(α0

i j , XE
i j ). (11)
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Fig. 2. 3× SR results of the Temple image. (a) BCI (PSNR = 25.29 dB, SSIM = 0.8762). (b) CSC (PSNR = 26.20 dB, SSIM = 0.8924).
(c) LSE (PSNR = 21.17 dB, SSIM = 0.7954). (d) EPI (PSNR = 24.34 dB, SSIM = 0.8901). (e) IER (PSNR = 25.54 dB, SSIM = 0.8937).
(f) JSR (PSNR = 27.87 dB, SSIM = 0.9327). (g) Groundtruth. (h) LR input.

(10) can be conveniently solved by the feature sign
algorithm [9]. Note (10) is a valid approximation of (9) since
ai j and a0

i j become quite close after a few iterations, so that
the higher-order Taylor expansions can be reasonably ignored.

Another noticeable fact is that since C > 0, the second
term is always emphasized more than the third term, which
makes sense as Yi j is the “accurate” LR image, while Xi j is
just an estimate of the HR image and is thus less weighted.
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Fig. 3. 3× SR results of the Train image. (a) BCI (PSNR = 26.14 dB, SSIM = 0.9403). (b) CSC (PSNR = 26.58 dB, SSIM = 0.9506).
(c) LSE (PSNR = 22.54 dB, SSIM = 0.8850). (d) EPI (PSNR = 26.22 dB, SSIM = 0.9487). (e) IER (PSNR = 24.80 dB, SSIM = 0.9323).
(f) JSR (PSNR = 28.02 dB, SSIM = 0.9796). (g) Groundtruth. (h) LR input.

Further considering the formulation (11), C grows up as
ω(α0

i j , XE
i j ) turns larger. That implies when external SR

becomes the major source of “SR noise” on a patch in the last
iteration, (10) will accordingly rely less on the last solved Xi j .

2) XE
i j -Subproblem: Fixing ai j and Xi j , the XE

i j -subproblem
becomes

min
XE

i j

exp(−p · ||Y′
mn − X

′E
i j ||2F )�I(Xi j , XE

i j ), (12)
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TABLE I

AVERAGE PSNR (dB) AND SSIM PERFORMANCES COMPARISONS ON THE SET 5 AND SET 14 DATASETS

TABLE II

THE PSNR VALUES (dB) WITH VARIOUS FIXED GLOBAL WEIGHTS

(PSNR = 24.1734 dB WITH AN ADAPTIVE WEIGHT)

While in Section III.B.2, X E
i, j is directly computed from the

input LR image, the objective in (12) is dependent not only
on X E

i, j but also on Xi, j , which is not necessarily minimized
by the best match X E

i, j obtained from solving fept . In our

implementation, the K best candidates (K = 5) that yield
minimum matching errors of solving fept are first obtained.
Among all those candidates, we further select the one that
minimizes the loss value as defined in (12). By this discrete
search-type algorithm, X E

i, j becomes a latent variable to be
updated together with Xi, j per iteration, and is better suited
for the global optimization than the simplistic solution by
solving fept .

3) Xi j -Subproblem: With both ai j and XE
i j fixed, the solu-

tion of Xi j simply follows a weight least square (WLS)
problem:

min
Xi j

||Dhai j − Xi j ||2F + ω(ai j , XE
i j )||X − XE

i j ||2F , (13)

with an explicit solution:

Xi j = Dhai j + ω(αi j , XE
i j ) · XE

i j

1 + ω(ai j , XE
i j )

. (14)

IV. EXPERIMENTS

A. Implementation Details

We itemize the parameter and implementation settings for
the following group of experiments1:

• We use 5 × 5 patches with one pixel overlapping for all
experiments except those on SHD images in Section 4.4,
where the patch size is 25×25 with five pixel overlapping.

• In (2), we adopt the Dl and Dh trained in the same way as
in [4], due to the similar roles played by the dictionaries
in their formulation and our �G function. However, we
are aware that such Dl and Dh are not optimized for
the proposed method, and will integrate a specifically

1Project page: http://www.atlaswang.com/jsr.html

designed dictionary learning part in future work. λ is
empirically set as 1.

• In (5), the size of the epitome is 1
4 of the image size.

• In (11), we set p = 1 for all experiments. We also
observed in experiments that a larger p will usually lead
to a faster decrease in objective value, but the SR result
quality may degrade a bit.

• We initialize ai j by solving coupled sparse coding in [4].
Xi j is initialized by bicubic interpolation.

• We set the maximum iteration number to be 10 for
the coordinate descent algorithm. For SHD cases, the
maximum iteration number is adjusted to be 5.

• For color images, we apply SR algorithms to the illu-
minance channel only, as humans are more sensitive to
illuminance changes. We then interpolate the color layers
(Cb, Cr) using plain bi-cubic interpolation.

B. Comparison With State-of-the-Art Results

We compare the proposed method with the following
selection of competitive methods as follows,

• Bi-Cubic Interpolation (“BCI” for short and similarly
hereinafter), as a comparison baseline.

• Coupled Sparse Coding (CSC) [4], as the classical
external-example-based SR.

• Local Self-Example based SR (LSE) [5], as the classical
internal-example-based SR.

• Epitome-based SR (EPI). We compare EPI to LSE to
demonstrate the advantage of epitomic matching over the
local NN matching.

• SR based on In-place Example Regression (IER) [20],
as the previous SR utilizing both external and internal
information.

• The proposed joint SR (JSR).

We list the SR results (best viewed on a high-resolution
display) for two test images: Temple and Train, by an ampli-
fying factor of 3. PSNR and SSIM measurements, as well as
zoomed local regions (using nearing neighbor interpolation),
are available for different methods as well.

In Fig. 2, although greatly outperforming the naive BCI,
the external-example based CSC tends to lose many fine
details. In contrast, LSE brings out an overly sharp SR result
with observable blockiness. EPI produces a more visually
pleasing result, through searching for the matches over the
entire input efficiently by the pre-trained epitome rather than
a local neighborhood. Therefore, EPI substantially reduces



4366 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2015

Fig. 4. 4× SR results of the Chip image. (a) BCI. (b) CSC. (c) LSE. (d) EPI. (e) IER. (f) JSR. (g) LR input.

the artifacts compared to LSE. But without any external
information available, it is still incapable of inferring enough
high-frequency details from the input solely, especially under
a large amplifying factor. The result of IER greatly improves
but is still accompanied with occasional small artifacts. Finally,
JSR provides a clear recovery of the steps, and it reconstructs
the most pillar textures. In Fig. 3, JSR is the only algorithm

which clearly recovers the number on the carrier and the bricks
on the bridge simultaneously. The performance superiorities of
JSR are also verified by the PSNR comparisons, where larger
margins are obtained by JSR over others in both cases.

Next, we move on to the more challenging 4× SR case,
using the Chip image which is quite abundant in edges and
textures. Since we have no ground truth for the Chip image
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Fig. 5. The weight maps of (a) Temple image; (b) Train image; (c) Chip image.

of 4× size, only visual comparisons are presented. Given such
a large SR factor, the CSC result is a bit blurry around the
characters on the surface of chip. Both LSE and EPI create
jaggy artifacts along the long edge of the chip, as well as small
structure distortions. The IER result cause less artifacts but in
sacrifice of detail sharpness. The JSR result presents the best
SR with few artifacts.

The key idea of JSR is utilizing the complementary behav-
ior of both external and internal SR methods. Note when
one inverse problem is better solved, it also makes a better
parameter estimate for solving the other. JSR is not a
simple static weighted average of external SR (CSC) and
internal SR (EPI). When optimized jointly, the external and
internal subproblems can “boost” each other (through auxiliary
variables), and each performs better than being applied inde-
pendently. That is why JSR gets details that exist in neither
internal or external SR result.

To further verify the superiority of JSR numerically,
we compare the average PSNR and SSIM results of a few
recently-proposed, state-of-the-art single image SR meth-
ods, including CSC, LSE, the Adjusted Anchored Neighbor-
hood Regression (A+) [23], and the latest Super-Resolution
Convolutional Neural Network (SRCNN) [22]. Table I
reports the results on the widely-adopted Set 5 and
Set 14 datasets [22], in terms of both PSNR and SSIM. First,
it is not a surprise to us, that JSR does not always yield
higher PSNR than SRCNN, et. al., as the epitomic matching
component is not meant to be optimized under Mean-
Square-Error (MSE) measure, in contrast to the end-to-end
MSE-driven regression adopted in SRCNN. However, it is
notable that JSR is particularly more favorable by SSIM than
other methods, owing to the self-similar examples that convey
input-specific structural details. Considering SSIM measures
image quality more consistently with human perception, the
observation is in accordance with our human subject evalua-
tion results (see Section IV. E).

C. Effect of Adaptive Weight

To demonstrate how the proposed joint SR will benefit from
the learned adaptive weight (11), we compare 4× SR results of
Kid image, between joint SR solving (1), and its counterpart
with fixed global weights, i.e. set the weight ω as constant for
all patches. Table II shows that the joint SR with an adaptive

weight gains a consistent PSNR advantage over the SR with
a large range of fixed weights.

More interestingly, we visualize the patch-wise weight maps
of joint SR results in Fig. 2 - 4, using heat maps, as in Fig. 5.
The (i, j )-th pixel in the weight map denote the final weight
of Xi j when the joint SR reaches a stable solution. All weights
are normalized between [0,1], by the form of sigmoid function:

1
1+ω(αi j ,XE

i j )
, for visualization purpose. A larger pixel value

in the weight maps denote a smaller weight and thus a
higher emphasis on external examples, and vice versa. For
Temple image, Fig. 5 (a) clearly manifests that self examples
dominate the SR of the temple building that is full of texture
patterns. Most regions of Fig. 5 (b) are close to 0.5, which
means that ω(αi j , XE

i j ) is close to 1 and external and internal
examples have similar performances on most patches. How-
ever, internal similarity makes more significant contributions
in reconstructing the brick regions, while external examples
works remarkably better on the irregular contours of forests.
Finally, the Chip image is an example where external examples
have advantages on the majority of patches. Considering self
examples prove to create artifacts here (see Fig. 4 (c) (d)),
they are avoided in joint SR by the adaptive weights.

D. SR Beyond Standard Definition: From HD Image
to UHD Image

In almost all SR literature, experiments are conducted with
Standard-Definition (SD) images (720 × 480 or 720 × 576
pixels) or smaller. The High-Definition (HD) formats: 720p
(1280 × 720 pixels) and 1080p (1920 × 1080 pixels)
have become popular today. Moreover, Ultra
High-Definition (UHD) TVs are hitting the consumer
markets right now with the 3840 × 2160 resolution. It is thus
quite interesting to explore whether SR algorithms established
on SD images can be applied or adjusted for HD or UHD
cases. In this section, we upscale HD images of 1280 ×
720 pixels to UHD results of 3840 × 2160 pixels, using
competitor methods and our joint SR algorithm.

Since most HD and UHD images typically contain much
more diverse textures and a richer collection of fine structures
than SD images, we enlarge the patch size from 5×5 to 25×25
(the dictionary pair is therefore re-trained as well) to capture
more variations, meanwhile increasing the overlapping from
one pixel to five pixels to ensure enough spatial consistency.
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Fig. 6. 3× SR results of the Leopard image (local region displayed). (a) Full SHD image. (b) Local region from SR result by BCI PSNR = 24.14 dB,
SSIM = 0.9701. (c) Local region from SR result by CSC PSNR = 25.32 dB, SSIM = 0.9618. (d) Local region from SR result by EPI PSNR = 23.58 dB,
SSIM = 0.9656. (e) Local region from SR result by JSR PSNR = 25.82 dB, SSIM = 0.9746.

Hereby JSR is compared with its two “component” algorithms,
i.e., CSC and EPI. We choose several challenging SHD images
(3840 × 2160 pixels) with very cluttered texture regions,

downsampling them to HD size (1280 × 720 pixel) on which
we apply the SR algorithm with a factor of 3. In all cases, our
results are consistently sharper and clearer. The SR results
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Fig. 7. Subjective SR quality scores for different methods. The ground truth
has score 1.

(zoomed local regions) of the Leopard image are displayed in
Fig. 6 for examples, with the PSNR and SSIM measurements
of full-size results.

E. Subjective Evaluation

We conduct an online subjective evaluation survey2 on
the quality of SR results produced by all different methods
in Section 4.2. Ground truth HR images are also included
when they are available as references. Each participant of the
survey is shown a set of HR image pairs obtained using two
different methods for the same LR image. For each pair, the
participant needs to decide which one is better than the other
in terms of perceptual quality. The image pairs are drawn
from all the competitive methods randomly, and the images
winning the pairwise comparison will be compared again in
the next round, until the best one is selected. We have a
total of 101 participants giving 1,047 pairwise comparisons,
over six images which are commonly used as benchmark
images in SR, with different scaling factors (Kid×4, Chip×4,
Statue×4, Leopard×3, Temple×3 and Train×3). We fit a
Bradley-Terry [30] model to estimate the subjective scores for
each method so that they can be ranked. More experiment
details are included in our Appendix. Figure 7 shows the
estimated scores for the six SR methods in our evaluation.
As expected, all SR methods receive much lower scores
compared to ground truth (set as score 1), showing the
huge challenge of the SR problem itself. Also, the bicubic
interpolation is significantly worse than others. The proposed
JSR method outperforms all other state-of-the-art methods by a
large margin, which proves that JSR can produce more visually
favorable HR images by human perception.

V. CONCLUSION

This paper presents a joint single image SR model,
by learning from both external and internal examples.
We define the two loss functions by sparse coding and epito-
mic matching, respectively, and construct an adaptive weight
to balance the two terms. Experimental results demonstrate

2http://www.ifp.illinois.edu/~wang308/survey

Fig. 8. (a) The hidden mapping Tk maps the image patch Zk to its
corresponding patch of the same size in e, and Zk can be mapped to any
possible epitome patch in accordance with Tk . (b) The epitome graphical
model.

that joint SR outperforms existing state-of-the-art methods for
various test images of different definitions and scaling factors,
and is also significantly more favored by user perception.
We will further integrate dictionary learning into the proposed
scheme, as well as reducing its complexity.

APPENDIX A
EPITOMIC MATCHING ALGORITHM

We assume an epitome e of size Me × Ne , for an input
image of size M × N , where Me < M and Ne < N . Similarly
to GMMs, e contains three parameters [6], [25], [26]: μ, the
Gaussian mean of size Me × Ne ; φ, the Gaussian variance
of size Me × Ne; and π , the mixture coefficients. Suppose Q
densely sampled, overlapped patches from the input image, i.e.
{Zk}Q

k=1. Each Zk contains pixels with image coordinates Sk ,
and is associated with a hidden mapping Tk from Sk to
the epitome coordinates. All the Q patches are generated
independently from the epitome and the corresponding hidden
mappings as below:

Q∏

k=1

p({Zk}Q
k=1|{Tk}Q

k=1, e) =
Q∏

k=1

p(Zk |Tk, e) (15)

The probability p(Zk |Tk, e) in (15) is computed by the
Gaussian distribution where the Gaussian component is spec-
ified by the hidden mapping Tk . Tk behaves similar to the
hidden variable in the traditional GMMs.

Figure 8 illustrates the role that the hidden mapping plays
in the epitome as well as the graphical model illustration
for epitome. With all the above notations, our goal is to
find the epitome e that maximizes the log likelihood function
e = arg max

ê
log p

(
{Zk}Q

k=1|ê
)

, which can be solved by the

Expectation-Maximization (EM) algorithm [6], [28].
The Expectation step in the EM algorithm which computes

the posterior of all the hidden mappings accounts for the
most time consuming part of the learning process. Since
the posterior of the hidden mappings for all the patches are
independent of each other, they can be computed in parallel.
Therefore, the learning process can be significantly accelerated
by parallel computing.

With the epitome eY′ learned from the smoothed input
image Y′, the location of the matching patch in the epitome eY′
for each patch X

′ E
i j is specified by the most probable hidden

mapping for X
′E
i j :

T ∗
i j = arg max

Ti j

p
(
Ti j |X′E

i j , e
)

(16)
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The top K patches in Y′ with large posterior probabilities
p

(
T ∗

i j |·, e
)

are regarded as the candidate matches for the

patch X′
i j , and the match Y′

mn is the one in these K candidate
patches which has minimum Sum of Squared Distance (SSD)
to X

′ E
i j . Note that the indices of the K candidate patches in Y′

for each epitome patch are pre-computed and stored when
training the epitome eY′ from the smoothed input image Y′,
which makes epitomic matching efficient.

EPI significantly reduces the artifacts and produces more
visually pleasing SR results by the dynamic weighting (4),
compared to the local NN matching method [5].

APPENDIX B
SUBJECTIVE REVIEW EXPERIMENT

The methods under comparison include BIC, CSC, LSE,
IER, EPI, JSR. Ground truth HR images are also included
when they are available as references. Each of the human
subject participating in the evaluation is shown a set of
HR image pairs obtained using two different methods for the
same LR image. For each pair, the subject needs to decide
which one is better than the other in terms of perceptual
quality. The image pairs are drawn from all the competitive
methods randomly, and the images winning the pairwise
comparison will be compared again in the next round until
the best one is selected.

We have a total of 101 participants giving 1,047 pair-
wise comparisons over 6 images with different scaling
factors (“Kid”×4, “Chip”×4, “Statue”×4, “Leopard”×3,
“Temple”×3 and “Train”×3). Not every participant completed
all the comparisons but their partial responses are still useful.
All the evaluation results can be summarized into a 7×7
winning matrix W for 7 methods (including ground truth),
based on which we fit a Bradley-Terry [30] model to estimate
the subjective score for each method so that they can be
ranked. In the Bradley-Terry model, the probability that an
object X is favored over Y is assumed to be

p(X � Y ) = esX

esX + esY
= 1

1 + esY −sX
, (17)

where sX and sY are the subjective scores for X and Y .
The scores s for all the objects can be jointly estimated by
maximizing the log likelihood of the pairwise comparison
observations:

max
s

∑

i, j

wi j log

(
1

1 + es j−si

)
, (18)

where wi j is the (i, j)-th element in the winning matrix W,
representing the number of times when method i is favored
over method j . We use the Newton-Raphson method to solve
Eq. (18) and set the score for ground truth method as 1 to
avoid the scale issue.
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