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Abstract The problem of similarity learning is relevant to many data mining applications,
such as recommender systems, classification, and retrieval. This problem is particularly chal-
lenging in the context of networks, which contain different aspects such as the topological
structure, content, and user supervision. These different aspects need to be combined effec-
tively, in order to create a holistic similarity function. In particular, while most similarity
learning methods in networks such as SimRank utilize the topological structure, the user
supervision and content are rarely considered. In this paper, a factorized similarity learning
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(FSL) is proposed to integrate the link, node content, and user supervision into a uniform
framework. This is learned by usingmatrix factorization, and the final similarities are approx-
imated by the span of low-rank matrices. The proposed framework is further extended to a
noise-tolerant version by adopting a hinge loss alternatively. To facilitate efficient computa-
tion on large-scale data, a parallel extension is developed. Experiments are conducted on the
DBLP and CoRA data sets. The results show that FSL is robust and efficient and outperforms
the state of the art. The code for the learning algorithm used in our experiments is available
at http://www.ifp.illinois.edu/~chang87/.

Keywords Supervised network similarity learning · Supervised network embedding ·
Large-scale network · Supervised matrix factorization · Link content consistency

1 Introduction

Networks are ubiquitous in the context of data mining and information retrieval applications.
Social and technical information systems usually exhibit awide range of interesting properties
and patterns such as interacting physical, conceptual, and societal entities. Each individual
entity interchanges and influences each other in the context of this interconnected network.
Information networks are usually very large and information rich. A significant amount
of research has been done to study various aspects of network analysis, such as search,
community detection, and collective classification.

A central tenet of network mining research is the notion of similarity between pairs of
nodes in a network. In many cases, similarity functions are used as subroutines in different
data mining applications. For instance, information retrieval queries use the learned sim-
ilarities [22,24,32,34,35], and recommender systems model user and item profiles from
collaborative similarities [16,27]. However, similarity learning in the network environment
differs from traditional approaches,mainly due to the heterogeneous information and sources,
including link information, content, and user behaviors. In addition, the noisy nature of the
underlying network poses a great challenge to effective learning. For instance, links are not
semantically meaningful, especially in online social networks such as Facebook. In this con-
text, it is essential to make the network similarity learning algorithms capable of dealing with
noisy multi-modality scenarios.

We illustrate the problem of similarity learning on networks in Fig. 1. The graph demon-
strates a generalized network structure, where each hexagon indicates a node in the network
and the arrowed dash lines are directed links between different nodes. The color of each node
reflects its property. Nodes with the same color indicate that they are similar, or belong to the
same group. The nodes also have content associated with them. In the context of networks
with noisy links, it is generally hard to learn similarities, with the use of only the linkage struc-
ture. In particularly, the impact of cumulative propagation of errors can be very significant in
such networks. For example, consider the scientific bibliography networks, in which nodes
represent authors and edges represent collaborations. In many cases, edges represent occa-
sional collaborations between different research domains, in spite of significant differences
between the corresponding nodes. On the other hand, the content provides complementary
information about authors, but ignores structural relationships among nodes in the network.

In this paper, we propose a factorized similarity learning (FSL) approach to transfer and
fuse knowledge from different domains. It fuses the information from network structure
(links), content, and user supervision, to achieve stable and generalized similarity learn-
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Fig. 1 An example of network structure

ing on networks. This is achieved by integrating these heterogeneous facets into a uniform
matrix factorization framework. The addition of content information to the network struc-
ture resolves the limitation of both local and global similarity measurements. This issue
has been widely discussed in information retrieval research [22,37]. The major advantage
of matrix factorization is that it provides a seamless way to capture the low-rank structure
of different aspects of the data, such as content, structure, and user supervision. The user
supervision is specified in terms of order constraints. The content and order constraints are
leveraged to regularize and reconstruct the network topology by identifying noisy links while
enhancing important ones. This provides semantically meaningful similarity functions and
effectively prevents the error propagation through the topological links. We further extend
FSL to distributed settings, in order to improve the computational efficiency. The enhanced
optimization techniques reduce the volume of the parameter space so that fast convergence
is assured. To verify the proposed FSL algorithm, we conduct several experiments on differ-
ent data sets, including DBLP scientific bibliography [10] and CoRA [25] citation data set.
The experimental results evaluated on large-scale data sets verify the effectiveness of our
approach.

The remainder of this paper is organized as follows. Section2provides an illustrative exam-
ple to motivate our approach. Section 3 reviews related work on both link- and content-based
similarity learning, and well-known matrix completion methods. We present the problem
formulation and mathematical model for FSL in Sects. 4 and 5. We then show how the model
can handle the case with noisy supervision in Sect. 6. We present extensive experiments on a
wide range of data sets in Sect. 7. The conclusion and future research directions are presented
in Sect. 8.

2 A motivating example

In this section, we describe a toy example from a real-world scientific author recommendation
and retrieval scenario. We show why the direct adoption of content-based or link-based met-
rics fails to provide good predictions. We consider the top six similar authors calculated from
two different metrics of the author Thomas S. Huang in the DBLP-Four-Areas data set [10],
which will be formally introduced in Sect. 7. Table 1 illustrates search results by directly
utilizing link weights and content features, respectively. We observed that recommended
authors using link information are only Thomas Huang’s close collaborators, students, or
postdoctoral associates. However, link weights fail to maintain high precisions for a long
ranking list because of sparsity issues. The main problem is that of the selection of the proper
choice of indirectly connected candidates. On the other hand, among authors retrieved from
the content source, most of them shared mutual interests for specific scientific topics. One of
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Table 1 A motivating example
to illustrate the variations in the
similarities between nodes from
different perspectives

Link Content

Rank 1 Shuicheng Yan Anni R. Bruss

Rank 2 Brendan J. Frey Qiang Yang

Rank 3 Xiaoou Tang Takeo Kanade

Rank 4 Ying Wu Jaime G. Carbonell

Rank 5 Huan Wang Rong Jin

Rank 6 Antonio Colmenarez Raghu Ramakrishnan

the drawbacks for such approaches is that each author is usually interested in several research
topics or belongs to multiple latent categories. Therefore, the use of a global content measure
overlooks the “similarity” in a fine-grid level. From this example, we see that the retrieved
results are various a lot from different perspective of similarity measures. Utilizing either of
the two along is insufficient to retrieve nodes with similar attributes in networks. Therefore,
we seek a unified learning framework that considers both linkage and content information.
In addition, we also incorporate the notion of “similar” into model learnings to identify the
underlying user intension in this paper.

3 Related work

In this section, we briefly review existing approaches for learning similarity functions as well
as some off-the-shelf matrix completion methods. In general, similarity learning can be done
by either using content or network topology.

3.1 Content-based similarity learning

In recent years, there are someemerging research interests in learning content-based similarity
in a low-dimensional space such that the regular Euclideanmetric ismoremeaningful in terms
of reflecting semantic “closeness” [1]. The first category is supervisedmetric learning, that is,
learning a distance metric from the training data with explicit class labels. The representative
techniques include theNeighborhoodComponentAnalysis (NCA) [12] and theLarge-Margin
Nearest Neighbor classification (LMNN) [41]. However, the performance of the supervised
approaches relies heavily on the number of labeled training data examples. This is a problem,
because such labels are usually not available in significant large numbers. Xing et al. [44]
proposed to use side information, instead of class labels. The side information is presented
as pair-wise constraints associated with input data, which provides weaker information than
the exact class labels. In particular, each constraint indicates whether a pair of samples
is similar or irrelevant to each other. Subsequently, there were several promising research
directions, such as Relevance Component Analysis (RCA) [2] and Information Theoretic
Metric Learning (ITML) [8].

However, most of the existing metric learning algorithms do not scale well across various
high-dimensional learning paradigms. The reason is the size of the distance matrix scales
with the square of the dimensionality. Sparse distance metric learning (SDML) [33] works
under pair-wise relevance constraints to produce sparse metrics which significantly reduce
the number of parameters, so that the time required for learning reduces dramatically. Another
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issue, which makes metric-based similarity learning inefficient for real-world applications,
is the positive semi-definite (PSD) constraints imposed on the distance matrix. In general, it
requires nontrivial PSD programming [4] techniques, and the computational complexity is
cubic in the dimensionality of the input data. A recent work proposed by Zhen et al., which
is referred to as Locally Adaptive Decision Learning (LAD) [20], learns a nonisotropic
similarity function by a joint model of a distance metric and a locally adaptive thresholding
rule. The LAD algorithm relaxes the PSD constraint so that the learned similarity can be
negative, if only the relative order is appreciated.

3.2 Link-based similarity learning

In contrast to content-based similarity learning, link-basedmethods emphasize network topo-
logical structure. The most popular link-based similarity learning method or ranking system
is known as the PageRank [30] , which is used by the Google search engine. The origi-
nal Brin and Page model for PageRank uses the hyperlink structure of the web to build a
Markov process with a primitive transition probability. A lot of link-based similarity learn-
ing approaches are motivated by PageRank including SimFusion [43], Pagesim [21], and the
relational like-base ranking [11].

An interesting method, known as SimRank [15], is an iterative PageRank-like structure
similarity measure in networks. However, SimRank only utilizes the in-link relationships for
proximity computation while neglecting the information conveyed from out-links. Zhao et al.
proposed a P-Rank [46] algorithm which extends SimRank by considering both in-link and
out-link simultaneously. It is worth mentioning that the most of existing link-based methods
rely heavily on homophily assumptions [26], which are insufficient for fully capturing the
underlying semantics.

3.3 Matrix factorization

Matrix factorization is one of themost popular methods inmatrix completion and recommen-
dation. Typically, the factorization assumes, that there are low-rank distributions in space,
and a low-rank approximation is utilized to regularize the factorization process. The funda-
mental problem is to fill out the missing entries of the utility matrix with sparse observations.
Traditional approaches include low-rank matrix fitting (LMaFit) [42], nonnegative matrix
factorization (NMF) [19] and probabilistic matrix factorization (PMF) [27], which fit a prob-
abilistic distribution for the matrix.

In the domain of collaborative filtering, which learns the similarities between different
entries, the social hints are also considered in addition to link structures [23,31]. These
approaches are referred to as social matrix factorization. Other approaches try to incorporate
content similarities into the factorization, and a typical extension is Collaborative Topic
Modes [40]. However, all the approaches are unsupervised and also do not work well in
noisy content-centric scenarios.

4 Problem formulation

The two fundamental components, which define a network topology, are nodes and edges.
We model any given network as a directed graph G(V, E), where V represents a set of
nodes/vertices and E represents the edges between these nodes. We denote the vertices by
V = {v1, . . . , vn} and edges by E = {e1, . . . , em}. Thus, there are a total of n nodes and
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m directed edges. The directed assumption is without loss of generality, because undirected
networks can be easily converted into a directed framework, by simply replacing undirected
links by two directed edges. We further assume that two additional types of information
are available. One of them corresponds to link weights, and the other one corresponds to
content features. The weight of a link indicates the strength of the connection, while the
content uniquely describes node characteristics. Let L = {l1, . . . , lm} represent the link
weights associated with the corresponding edges {ei } in the network, where each li ∈ R,
∀i = {1, . . . ,m}. Similarly, let C = {c1, . . . , cn} be the set of content features represented by
a vector in some vector space in Rd , so that every vi ∈ V is associated with a d−dimensional
content vector denoted by ci . In addition, supervision information is available about the
relative similarity between nodes. The user supervision (intentional knowledge) is given by
triplet constraints of the form:

S = {(vi , v j , vk) : (vi and v j ) more similar to (vi and vk)}.
The triplet setting is generally preferable to the pair-wise setting, because comparing two
objects in terms of absolute similarity is very abstract and subjective [18]. Unlike the
traditional pair-wise settings, triplet constraints are defined by comparing two pair-wise
similarities. It is worth mentioning that, although we only consider the triplet setup in this
paper, our proposed method can be easily extended to other forms of supervision. In sum-
mary, we characterize a network, using the representation G(V, E, C,L,S), which includes
the graph structure, content and link features, and supervision.

5 Factorized similarity learning on networks

In this section, we introduce a novel factorization-based scheme for learning node-based sim-
ilarity measures in networks represented as G(V, E, C,L,S) as well as the intuition behind
the mathematical abstraction. Our approach models the similarity learning as a matrix com-
pletion problem, where it aims at supervised learning the correlation between different nodes
using both link and content information so that the completed similarity matrix will correctly
reflect the homogeneity between different nodes.

5.1 Parameterizations and constraints

In order to model the similarity learning as a matrix completion problem, we formulate
G(V, E, C,L,S) in matrix forms. Let C ∈ R

n×d and L ∈ R
n×n represent the content and

link matrices, which are defined as follows. Each row Ci · of the content matrix C is the
corresponding feature vector ci ∈ C. If the link weight l p ∈ L associates with edge ep ∈ E
which connects nodes vi and v j ∈ V , then the Li j entry in the link matrix L will be l p . A
nonzero entry Li j in L indicates that a link exists from the node vi to v j , with a weight equal
to the strength of the link. It is worth pointing out that both C and L are typically very sparse
in practice.

The target of our approach is to learn a matrix S ∈ R
n×n , which reflects the encoded

information in both L and C . The (i, j)th entry of S measures the similarity from nodes
vi to v j . The similarity matrix S is not necessarily symmetric, because similarity is usually
nonisotropic across the network. Thus, we do not explicitly constrain the symmetry of S, in
order to make our model more general. On the other hand, the triplet supervision is modeled
as constraints for the space of S, i.e., the similarity matrix S has to obey the user-specified
supervision as much as possible. If the supervision suggests that nodes vi and v j are more
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similar to each other, than nodes vi and vk , the learned similarity has to reflect the facts
by enforcing Si j > Sik . However, in terms of mathematical abstraction, the strict order
relationship is not a compact set regularizing the space of S. Almost all existing optimization
approaches do not favor the open set constraints. We leverage the problem by each constraint
as a closed half-space. Specifically, we require that S has to be in the set T , which is defined
as follows:

T .= {S : Si j ≥ Sik + c, ∀(vi , v j , vk) ∈ S}. (1)

Here, c is the margin controlling the minimal separability of the similar entries. The value of
c can be chosen arbitrarily, since the order between candidate nodes is more important than
the actual similarity value at each entry of S. Throughout this paper, we set c to be equal to
1 for simplicity. Moreover, the following convexity result holds:

Lemma 1 The set T , as defined in Eq. (1), is convex.

Proof T can be expressed as the intersection of |S| sets as T = T1 ∩ · · · ∩ T|S|. Each Tm
involves a set of triplet supervision. Without loss of generality, assume Tm = {S : Si j ≥
Sik + 1}. It can be easily verified that Tm is a convex set by the definition of convex sets by
assuming S1, S2 ∈ Tm , α ∈ [0, 1]. Then, the following is true:

αS1i j + (1 − α)S2i j ≥ α(S1ik + 1) + (1 − α)(S2ik + 1)

≥ αS1ik + (1 − α)S2ik + 1.

Therefore, αS1 + (1− α)S2 ∈ Tm and Tm is a convex set. Furthermore, T is an intersection
of a finite number of convex sets. Therefore, T is convex. ��
5.2 Information encoding

As is generally the case for matrix completion problems, we assume that the rank of S is
much less than the number of nodes n in the given network. This is a very natural assumption,
because the number of latent factors characterizing different nodes is much smaller than the
number of nodes. However, unlike existingmatrix completion problems, S also satisfies some
partial order constraints. The minimum number of latent topics, which allows S to satisfy all
the constraints, indicates the intrinsic rank of the similarity matrix. Both content and link data
encoded in the network are traded as side information, to enhance the factorization, followed
by intentional knowledge.

To utilize all available information, let S to be a completed matrix using both content
information C and link weight matrix L . We factorize S as S ∼= UV , where U ∈ R

n×r

and V ∈ R
r×n are two low-rank matrices such that r 	 n. Different terms in the objective

function contribute to different aspects of the similarity function. The term ‖S − UV ‖2F
penalizes the error by approximating S as two low-rank factors. ‖ · ‖F is the Frobenius norm
of a given matrix, where ‖X‖F = √

tr(XXT ) and tr(·) represents the trace of the matrix.
The link information contributes to similarity learning through the following term in the

objective function.
‖PΩ(S) − PΩ(L)‖2F , (2)

where Ω is the index set for the observed elements and the projection PΩ is a orthogonal
projector defined in [5]: The (i, j)th element of PΩ(L) is equal to Li j if (i, j) ∈ Ω and zero
otherwise. In other words, we propagate the link information through its nonzero feature
weights. This is done, so that the model will have consistent values as suggested by the link
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features. This term ensures that the similarity matrix S is influenced by the local topological
structure.

Furthermore, to encode the content information in our model, we assume that the content
matrix C can be factorized as two low-rank matrices that is a sharedU and a basis matrixW ,
where W ∈ R

r×d . The third term in the objective function contains the sum of errors of two
matrix factorizations, among which the matrix U is common. This ensures the propagation
of similarity information from C to S.

‖S −UV ‖2F + ‖C −UW‖2F . (3)

Note that S has already encoded the link information through the objective function term
represented by Eq. (2). The intuition behind these two terms in Eq. (3) is that the projections
from link and content to a common latent space are identical. If we assume that both V and
W are orthonormal, then we multiply V T and WT on both sides of equations S = UV and
C = UW . We obtain the following: SV T = U and CWT = U . The similarity matrix S,
which encodes the link information and the content matrix C , are projected into a common
subspace U through projections V T and WT .

Therefore, the content and link information can be bridged coherently using the afore-
mentioned scheme, so that the learned similarity matrix S is consistent with both content and
link information globally and locally. A graphical illustration on how different information
sources are fused and transferred to contribute to learning node-based similarity is shown in
Fig. 2.

5.3 Integrated objective function

According to the discussion in previous sections, we integrate all the aforementioned parts
into a coherent learning framework as:

min
U,V,W,S

‖PΩ(S) − PΩ(L)‖2F + λ1‖S −UV ‖2F + λ2‖C −UW‖2F
subject to: S ∈ T , VV T = Ir ,WWT = Ir .

(4)

However, the objective in Eq. (4) has two problems, which lead to inefficient optimization
algorithms. The first problem is that the first term in the above objective function contains a
projection of nonzero entries in the link matrix. PΩ(L) can be viewed as indicator function
of all nonzero entries of L , which is discrete. Integer programming solvers are usually quite
slow. To alleviate these challenges, we introduce a transition variable T ∈ R

n×n acting as a
bridge to transfer knowledge from L to S. Then,we are able to convert the projection/indicator

Fig. 2 An idea illustration for integrating different information sources in networks
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term in Eq. (4) to a new set of constraints on T . Another issue is the orthonormal constraints
on both V andW . Not only the orthogonal constraints introduce more nonconvexity into the
objective, they also make the algorithms more complex [47]. Alternatively, we can relax the
orthogonal constraint. To prevent overfitting, we introduce Frobenius norms on both V and
W . To this end, we reformulate objective function (4) as follows:

min
U,V,W,T,S

‖S − T ‖2F + λ1‖S −UV ‖2F + λ2‖C −UW‖2F
+ λ3(‖V ‖2F + ‖W‖2F )

subject to: PΩ(L) = PΩ(T ), S ∈ T .

(5)

5.4 Optimization

In this subsection, we demonstrate that the optimization problem in Eq. (5) can be solved
efficiently and effectively using the block coordinate descent method [4], which seeks the
optimal value for one particular variable, while fixing others. Though the formulation is
nonconvex, each subproblem in block coordinate descent is convex. The key here is in
solving for each of the variable sets U , V , W , T , and S, while keeping the others fixed.

5.4.1 Solving for U

Fixing parameters V,W, T, S to optimizeU , the objective function (5) reduces to a standard
convex unconstrained quadratic program as follows:

min
U

λ1‖S −UV ‖2F + λ2‖C −UW‖2F . (6)

By determining the derivative of the aforementioned objective with respect toU , and setting
it to zero, we obtain:

− 2λ1(S −UV )V T − 2λ2(C −UW )WT = 0, (7)

We can obtain an analytic solution for the global minimum:

U∗ = (λ1SV
T − λ2CWT )(λ1VV T + λ2WWT )†, (8)

where (·)† indicates the pseudo-inverse for a given matrix.

5.4.2 Solving for V

Similar to solving for U , the matrix V can be solved as a standard unconstrained ridge
regression problem, and the objective function can be written as follows:

min
V

λ1‖S −UV ‖2F + λ3‖V ‖2F . (9)

As in the previous case, we can determine the first-order derivative of the objective function
in Eq. (9) with respect to V to be zero as follows:

− 2λ1U
T (S −UV ) + 2λ3V = 0, (10)

The aforementioned equation can be solved in order to obtain a global minimum for V .

V ∗ = (UTU + λ3
λ1
Ir )

−1UT S. (11)

where Ir is an identity matrix of size r × r .
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5.4.3 Solving for W

Solving for W is almost identical to solving for V . By fixing U , V , T , and S, we can write
the objective function and the analytical solution for the optimal value of W as follows:

min
W

λ2‖C −UW‖2F + λ3‖W‖2F , (12)

The optimal value for W is as follows:

W ∗ =
(
UTU + λ3

λ1
Ir

)−1
UTC. (13)

5.4.4 Solving for T

When we solve for T , while keeping the remaining parameters fixed, we obtain a constrained
least-squares minimization problem:

min
T

‖S − T ‖2F s.t.:PΩ(L) = PΩ(T ). (14)

The equality constraints ensure that nonzero entries of the link matrix L are consistent with
the corresponding position on T . Since it is a convex problem, the standard technique for
solvingEq. (14) first sets T = S and then applies the orthogonal projection on T . In particular,
we set the entries of T inΩ to be the same, as the corresponding value of L . The compressed
analytical solution for S can be written as T ∗ = S + (PΩ(L) − PΩ(S)).

5.4.5 Solving for S

At this point, we can also solve for S, so that Eq. (5) is minimized. To do so, we obtain the
following optimization problem:

min
S

‖S − T ‖2F + λ1‖S −UV ‖2F s.t.: S ∈ T . (15)

The objective function can be further compressed by a least square term as ‖S − 1
1+λ1

(T +
λ1UV )‖2F . Since the set T is a convex set, the problem in Eq. (15) is again a convex con-
strained optimization problem, which can be solved using projected gradient methods [3,28].
The proximal operator associated with Eq. (15) is in the form of projecting a point to the
intersection of a set of half-spaces T = ∩|S|

i=1Ti �= ∅, which can solved using proximal split-
ting methods [7]. Moreover, we observe that our objective is a simple projection problem,
and thus, we can use the successive projection algorithm to solve it efficiently [13]. This has
the effect of avoiding expensive line search procedures. The optimal S obtained by first set
is as 1

1+λ1
(T + λ1UV ) then project it onto the convex set T . We now provide a closed-form

solution to the projection into each set Ti .

Definition 1 A mapping ΠT : Rn×n → T is a projection associated with convex set T , if
it satisfies that for any S ∈ R

n×n , ΠT (S) is the unique matrix in T that is closest to S, i.e.,

‖S − ΠT (S)‖ ≤ ‖S − S′‖, ∀ S′ ∈ T , S ∈ R
n×n

with equality if and only if S′ = ΠT (S).
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Theorem 1 Suppose that Tm = {S : Si j ≥ Sik + 1}. Then, for any S ∈ R
n×n, the projection

from S to the convex set Tm is as follows:

ΠTm (S) = S∗ = S if S ∈ Tm,

Furthermore, if S /∈ Tm, then the following is true:

ΠTm (S) = S∗ =

⎧
⎪⎪⎨

⎪⎪⎩

S∗
i j = 1

2 (1 + Si j + Sik)

S∗
ik = 1

2 (−1 + Si j + Sik)

S∗
pq = Spq ∀{p, q} �= {i, j} and {i, k}.

Proof For any S ∈ Tm , we have the trivial solution that the projection is itself. For any
S /∈ Tm , we are seeking the optimal value of S∗, such that the projection error ‖S − S∗‖2F is
minimized. In other words, the solution to the minimization problem of minS∗∈Tm ‖S− S∗‖2F
provides the projector. Because the Frobenius norm is decoupled for every element, it follows
that Tm only affects the entries of S∗

i j and S∗
ik . Therefore, by choosing S∗

pq = Spq , we obtain
zero projection error for S∗

pq for all {p, q} �= {i, j} and {i, k}. The minimization problem is
further reduced to the following:

minS∗
i j≥S∗

ik+1 (Si j − S∗
i j )

2 + (Sik − S∗
ik)

2.

��

We observe the following property of the optimal solution:

Lemma 2 For any x, y, x ′, and y′ ∈ R, such that x ′ ≤ y′ − c, where c ∈ R
+, x ′ =

1
2 (−c + x + y), and y′ = 1

2 (c + x + y) provide the minimal value of the least-squares
function f (x, y, x ′, y′) = (x − x ′)2 + (y − y′)2 if x > y + c. For x ≤ y − c, the minimal
f (x, y, x ′, y′) is obtained by setting x ′ = x and y′ = y.

Applying the above lemma, we obtain the optimal least-squares solution for S∗
i j and S∗

ik
as

S∗
i j = 1

2 (1 + Si j + Sik) and S∗
ik = 1

2 (−1 + Si j + Sik).

This completes the proof.
The proof of Lemma 2 is provided as the followings:

Proof The problem can be formulated as a constrained convex program as

minx ′,y′ (x ′ − x)2 + (y′ − y)2 subject to: x ′ ≤ y′ − c.

The optimal solution can be interpreted as numerically solving the KKT system of equations
[4]. The Lagrangian dual problem is

maxλ minx ′,y′ (x ′ − x)2 + (y′ − y)2 + λ(x ′ − y′ + c),

where λ is the so-called KKT multiplier. The optimal x ′∗ and y′∗ are achieved if it satisfies
some regularity conditions such as the stationarity

{
2(x ′ − x) + λ = 0
2(y′ − y) − λ = 0

⇒
{
x ′ = − 1

2λ + x
y′ = 1

2λ + y
,
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Algorithm 1: Factorized Similarity Learning
Input: Content matrix C , link matrix L and ordered constraint set T
Output: Similarity matrix S
Initialize: U , V , W , T and S1
repeat2

U = (λ1SV
T − λ2CWT )(λ1VV T + λ2WWT )†;3

V = (UTU + λ3
λ1

Ir )−1UT S;4

W = (UTU + λ3
λ1

Ir )−1UTC ;5

T ∗ = S + (PΩ(L) − PΩ(S));6

S = 1
1+λ1

(T + λ1UV );7

Slice S in row-wise into {Si ·}ni=1 to compute parallel;8

for i = 1 . . . n do9
repeat10

if Si j < Sik + 1 ∀(i, j, k) ∈ S then11

Si j = 1
2 (1 + Si j + Sik )12

Sik = 1
2 (−1 + Si j + Sik )13

end14

until all constraint satisfied;15

end16

until converge or maximum iteration exceed;17
return S18

the primal feasibility x ′ − y′ + c ≤ 0, the dual feasibility λ ≥ 0, and the complementary
slackness λ(x ′ − y′ + c) = 0. By solving the system of equations, we obtain the optimal
solution of x ′∗ and y′∗ as

if λ = 0 then

{
x ′∗ = x
y′∗ = y

, otherwise

{
x ′∗ = (−c + x + y)/2
y′∗ = (c + x + y)/2

This, thus, completes the proof. ��
We conclude this subsection by illustrating the optimization scheme for the proposed FSL

method in Algorithm 1.

5.5 Large-scale network handling

For a large-scale network, most of commodity hardware cannot hold the similarity matrix S
in main memory. This situation is typically arrived at, when the number of nodes exceeds
30,000. In order to alleviate this issue, we will show the proposed method can be easily
formulated in a divided and conquer framework.

We first slice the similarity matrix S in row-wise fashion, into different submatrices
S1, . . . Sm , where each Si ∈ R

(n/m)×n . Then, each Si can be further expressed as Si = UiV ,
where each Si corresponds to a (n/m) × r matrix Ui . From the block-wise matrix multi-
plication, we know that if we stack each Ui in column-wise fashion, and multiply by V ,
the result will be exactly equal to the original n × n similarity matrix Si . By doing so, it
provides significant memory efficiency gain. Instead of storing a n × n matrix S, we only
require (n/m) × n floating point space. In an extrema case of n = m, we achieve the lowest
memory cost. Figure 3 provides a visual perspective of extending the proposed method into
a large-scale framework.
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Fig. 3 Large-scale matrix handling

The mathematical abstraction can be directly derived from Eq. (5) as follows:

min
Ui ,V,W,Ti ,Si ,∀i

m∑

i=1

‖Si − Ti‖2F + λ1

m∑

i=1

‖Si −UiV ‖2F

+ λ2

m∑

i=1

‖Ci −UiW‖2F + λ3
(‖V ‖2F + ‖W‖2F

)

subject to: PΩ(Li ) = PΩ(Ti ), Si ∈ Ti ∀i,

(16)

Here, Ci , Li , and Ti are the corresponding sliced content, link, and bridging matrices. The
overall result is that neither the network information, nor the completed similarity matrix S
will be stored in main memory as a whole piece, and the memory can be managed much
more efficiently.

5.5.1 Solving for Ui , Ti , and Si

The process of solving for each Ui , Ti , and Si uses a similar approach. Here, we provide a
detailed optimization scheme for Ui , and the similarly idea can be easily extended to solve
for Ti and Si .

Calculating U can be seen as optimizing m subproblems for each Ui (at a smaller scale),
which has no interdependency. Moreover, the solution for Ui is exactly same as before:

U∗
i =

(
λ1Si V

T − λ2CiW
T
) (

λ1VV T + λ2WWT
)†

. (17)

5.5.2 Solving for V and W

Solving for V is slightly different from the case, when we treat matrices S and U as whole.
The corresponding Eq. (9) is transformed as follows:

min
V

λ1

m∑

i=1

‖Si −UiV ‖2F + λ3‖V ‖2F , (18)

The optimal analytical solution of V is as follows:

V ∗ =
(

m∑

i

UT
i Ui + λ3

λ1
Ir

)−1 (
m∑

i

UT
i Si

)

. (19)
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The optimal value of W can be calculated in a similar manner, and that is as follows:

W ∗ =
(

m∑

i

UT
i Ui + λ3

λ1
Ir

)−1 (
m∑

i

UT
i Ci

)

. (20)

5.6 Discussion on speeding up the learning

The bottleneck of efficient learning is at the step of updating S or Si in both conventional
and large-scale formulations in Eqs. (15) and (16), respectively. However, the proposed FSL
algorithm is able to decouple the row updates of the similarity matrix S, involving supervised
projection. Essentially, this can be easily fit into a MapReduce framework to significantly
boost the training efficiency. Moreover, for the large-scale formulation in Eq. (16), the low-
rank matrices Ui , bridging matrices Ti , and the similarity matrix Si can also be handled in
parallel to reduce the running time. While we present these ideas as possibilities for future
exploration, a detailed discussion is beyond the scope of this paper.We refer interested readers
to [45], and [9] for background on relevant big data frameworks.

6 Noisy supervision

Real-world data always contain a significant amount of noise, which could be extremely
detrimental to the algorithms. In this section, we explicitly consider the case, where the
available supervision is noisy. We show how the proposed method can be integrated with
noisy intentional knowledge to yield reliable predictions.

In Sect. 4, we model the user intentional knowledge on different samples as a set of
triplet constraints S, in which each element in the constraint set is in the form (vi , v j , vk).
Specifically, each triplet supervision provides the similarity information on two pairs of nodes
with the same query node. When the noise increases, similarity learning could result in poor
quality. We illustrate the problem of noisy supervision with a toy example.

Suppose that four different nodes a, b, c, d are given, and the correct underlying simi-
larity order of using a as a query is that (a, b) > (a, c) > (a, d). If {(a, b, c), (a, c, d)}
is given as the constraint set S, we can order the candidate node b, c, d correctly with
respect to reference a. With noisy supervision examples, such as {(a, b, c), (a, d, b)} or
{(a, b, c), (a, d, c), (a, c, d)}, the ranking result will either be in an incorrect order, or may
have no feasible solution. The inconsistent supervision provides no feasible solution of S ∈ T
in Eq. (5).

The aforementioned toy example suggests that the constraints should be relaxed with the
use of slack variables ξi jk . Intuitively, these slack variables can account for the noise in the
objective function. Therefore, the modified optimization problem is as follows:

min
U,V,W,T,S,ξi jk

‖S − T ‖2F + λ1‖S −UV ‖2F + λ2‖C −UW‖2F
+ λ3(‖V ‖2F + ‖W‖2F ) + λ4

∑

(i, j,k)∈S
ξi jk

subject to: PΩ(L) = PΩ(T ), ξi jk ≥ 0,

Si j − Sik ≥ 1 − ξi jk ∀(i, j, k) ∈ S.

(21)

It is worth mentioning that the core idea behind such a large-margin relaxation is similar to
the formulation of support vector machines (SVM) [39].
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6.1 Optimization

Equation (21) can be solved using stochastic subgradient descent [36] by converting the last
two constraints as a penalty term in the objective.

min
U,V,W,T,S

‖S − T ‖2F + λ1‖S −UV ‖2F
+ λ2‖C −UW‖2F + λ3(‖V ‖2F + ‖W‖2F )

+ λ4
∑

(i, j,k)∈S
max {0, 1 − Si j + Sik}

subject to: PΩ(L) = PΩ(T ),

(22)

Here, λ4 regulates the noise penalty. The term associated with λ4 is the hinge loss [39].
To solve the optimization problem in Eq. (22), we follow a similar procedure, as illustrated

in Algorithm 1 by the block coordinate descent method. The only difference is that we
compute the subgradient at the step of solving S instead of using the projected gradient
methods. By fixing other parameters to compute the optimal value of S, we obtain:

min
S

f (S) = ‖S − T ‖2F + λ1‖S −UV ‖2F
+ λ4

∑

(i, j,k)∈S
max {0, 1 − Si j + Sik}, (23)

This is an unconstrained quadratic programming problem. Furthermore, one of the subgra-
dient of f (S) is as follows:

∂ f (S)
∂S = 2(S − T ) + 2λ1(S −UV )

+ λ4
∑

(i, j,k)∈S
1{1 − Si j + Sik ≥ 0}(Eik − Ei j ),

(24)

Here, 1(·) is an indicator function, and Ei j = eTi e j . Moreover, ei is the standard unit vector
which is a 1× n vector with only the i th entry set to one, and zero otherwise. We use the line
search strategy in our implementation.

6.2 An efficient dual solver

Instead of the subgradient method, we derive the dual form of the optimization problem (23)
which possesses a efficient solution. Using the slack variables {ξi jk}, (23) is equivalent to

min
S

‖S − T ‖2F + λ1‖S −UV ‖2F + λ4
∑

(i, j,k)∈S
ξi jk,

subject to: ξi jk ≥ 0, Si j − Sik ≥ 1 − ξi jk ∀(i, j, k) ∈ S.

(25)

Note that each row of S in the primal problem (25) can be optimized separately, since the rows
of S are independent of each other in both the objective function and the constraints. Similar
to what we discussed in the Sects. 5.5 and 5.6, solving S in a row-wise manner significantly
facilitates large- scale applications and benefits from parallel computing. Let Si denote the
i-th row of S, and then, the optimization problem for each Si is written as:

min
Si

‖Si − Ti‖22 + λ1‖Si −UiV ‖22 + λ4
∑

(i, j,k)∈S
ξi jk,

subject to: ξi jk ≥ 0, Si j − Sik ≥ 1 − ξi jk,

(26)
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which is a constrained convex optimization problem. It can be solved by its dual problem
due to the strong duality according to Slater’s condition [4]. In the sequel, we show that
the dual problem is a box-constrained quadratic programming problem which can be solved
efficiently by the coordinate descent algorithm. As opposed to the subgradient method for the
primal problem, the limited inequality constraints lead to a dual problem that can be solved
much faster by coordinate descent.

With the dual variablesαi jk ≥ 0 andβi jk ≥ 0 for the inequality constraints, theLagrangian
of the optimization problem (26) is

L(Si , ξ, α, β) = ‖Si − Ti‖22 + λ1‖Si −UiV ‖22 + λ4
∑

(i, j,k)∈S
ξi jk

−
∑

(i, j,k)∈S

(
αi jk(Si j − Sik + ξi jk − 1) + βi jkξi jk

)
.

(27)

Taking derivative of L with respect to Si and {ξ}, we have
∂L
∂Si

= 2(Si − Ti ) + 2λ1(Si −UiV ) −
∑

(i, j,k)

αi jk(e j − ek), (28)

and
∂L

∂ξi jk
= λ4 − αi jk − βi jk, ∀(i, j, k) ∈ S. (29)

Letting derivatives in Eqs. (28) and (29) be zero, we have

S∗
i =

∑
(i, j,k)∈S αi jk(e j − ek) + 2λ1UiV + 2Ti

2 + 2λ1
, and

αi jk + βi jk = λ4, ∀(i, j, k) ∈ S.

(30)

We further denote by αi , βi , ξi the vectorization of αi jk , βi jk , and ξi jk with (i, j, k) ∈ S,
respectively. Ri = {( j, k) : (i, j, k) ∈ S} is used to represent indices of the elements of Si
that appear in the constraints, and αi , βi , ξi are of size 1 × |Ri |. Moreover, we define the
matrix Mi of size |Ri | × n whose rows are comprised of {e j − ek, (i, j, k) ∈ S}, and the
rows of M are arranged in the order such that αi Mi = ∑

(i, j,k)∈S αi jk(e j − ek). With these
new notations, S∗

i can be rewritten as

S∗
i = λ1UiV + Ti

1 + λ1
+ αi Mi

2 + 2λ1
. (31)

Substituting S∗
i (31) into the Lagrangian (27), we obtain the dual problem below, which is a

box-constrained quadratic programming (QP) problem:

min
αi

P(αi ) = 1

2
αi Qiα

T
i − αi r

T
i subject to: 0 ≤ αi ≤ λ4, (32)

where

Qi = MiMT
i

2(1 + λ1)
, ri = 1 − (λ1UiV + Ti )MT

i

1 + λ1
. (33)

1 is an all-ones 1 × Ri vector, and the inequality in (32) is the element-wise inequality.
In addition, according to the KKT conditions, the optimal solution of the primal and dual
variables should satisfy:
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⎧
⎪⎨

⎪⎩

αis(Si j − Sik + ξi jk − 1) = 0

βisξis = 0

αis + βis = λ4, αis ≥ 0, βis ≥ 0,

where αis is the s-th element of αi and 1 ≤ s ≤ |Ri |. j, k are the indices that correspond to
the s-th constraint. Combined with the primal constraints in Eq. (26), it follows that

⎧
⎪⎨

⎪⎩

αis = 0 ⇒ Si j − Sik ≥ 1

0 < αis < λ4 ⇒ Si j − Sik = 1

αis = λ4, ⇒ Si j − Sik ≤ 1.

(34)

Note that Qi is positive semi-definite, but it may not be positive definite. Also, it can
be verified that the diagonal elements of Qi are all 1

1+λ1
since the diagonal elements of

MiMT
i are all 2. We use coordinate descent method [38] to solve the optimization problem

(32). In each iteration of the coordinate descent, the objective function P(αi ) is minimized
in a coordinate-wise manner. Suppose αt

i = {αt
i1, α

t
i2, . . . , α

t
i |Ri |} is the value of αi in t-th

iteration for t ≥ 0, the coordinate descent method minimizes αis for s = 1, 2, . . . , |Ri | with
other elements fixed:

αt+1
i1 = argmin

αi1

P(αi1, α
t
i2, . . . , α

t
i |Ri |)

. . .

αt+1
is = argmin

αis

P(αt+1
i1 , αt+1

i2 , . . . , αis, α
t
i(s+1), . . . , α

t
i |Ri |)

αt+1
i |Ri | = argmin

αi |Ri |
P(αt+1

i1 , αt+1
i2 , . . . , αt+1

i(|Ri |−1), αi |Ri |).

(35)

To illustrate the coordinate-wise minimization in (35), we show how to optimize over αis

with all the remaining elements {αi1, . . . , αi(s−1), αi(s+1), . . . , αi |Ri |} fixed. In this case, the
optimization problem of Eq. (32) is reduced to

min
αis

P(αis) = 1

2(1 + λ1)
α2
is − Rsαis, s.t.: 0 ≤ αis ≤ λ4, (36)

where Rs = ris − ∑

u �=s
αiu(Qi )su . Equation (35) is an univariate QP problem, and P(αis)

achieves its minimum at

α∗
is =

⎧
⎨

⎩

λ4 : Rs(1 + λ1) > λ4
Rs(1 + λ1) : 0 ≤ Rs(1 + λ1) ≤ λ4
0 : Rs(1 + λ1) < 0.

(37)

The coordinate descent algorithm for the dual problem (32) for each 1 ≤ i ≤ n is summarized
in Algorithm 2.

6.3 Theoretical guarantees

Let P∗ denote the minimum value of the objective function for the dual problem (32),
and {αt

i }∞t=1 be the sequence obtained by the coordinate descent Algorithm 2 with ε0 = 0
and τmax = ∞. Based on the property of coordinate descent Algorithm [38], Algorithm 2
converges and obtains the globally optimal solution to the dual problem (32). In fact, since
the sequence {αt

i }∞t=1 is bounded, it contains a subsequence that converges to the optimal
solution to (32) where the optimality condition is met. In practice, the stopping threshold ε0
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Algorithm 2: Coordinate Descent Algorithm for the Dual Problem (32)

Input: Ui , V , λ4, Ri : the constraint set, α
0
i : the initial value of αi , ε0: the stopping threshold, τmax:

the maximum number of iteration
Output: The i-th row of the similarity matrix Si
Initialize: t = 0, α0i is set to be a all zeros vector. Compute Qi , ri according to (33).1

for t = 0 . . . τmax − 1 do2
for s = 1 . . . |Ri | do3

Rs = ris − ∑

u �=s
αiu(Qi )su , Rs is computed using

4

{αt+1
i1 , . . . , αt+1

i(s−1), α
t
i(s+1), . . . , α

t
i |Ri |}.5

αt+1
is =

⎧
⎨

⎩

λ4 : Rs (1 + λ1) > λ4
Rs (1 + λ1) : 0 ≤ Rs (1 + λ1) ≤ λ4

0 : Rs (1 + λ1) < 06

end7

if ‖αt+1
i − αti ‖2 < ε0 then8

The algorithm converges and break9

end10
t = t + 111

end12

Compute Si = λ1Ui V+Ti
1+λ1

+ α∗
i Mi

2+2λ1
using the obtained optimal solution α∗

i .13

return Si14

is a small positive number and τmax is finite. For ε0 > 0, Theorem 2 gives the upper bound
for the number of iterations required for the convergence of Algorithm 2.

Theorem 2 The coordinate descentAlgorithm2converges after atmost

⌈
2|Ri |(P0−P∗)(1+λ1)

ε20

⌉

iterations, where P0 = P(α0
i ) is the initial value of the objective function.

Proof First of all, since P is a contentious function that defined on a compact set specified
by 0 ≤ αi ≤ λ4, the range of P is also a compact set, and it follows that P∗ exists and
−∞ < P∗ < ∞. In the following text, we will prove that by each iteration of coordinate
descent described inAlgorithm 2, the decline of the value of the objective function is bounded
from above, from which both the convergence and the bound for the number of iterations
required for convergence are established.

After the t-th (t ≥ 0) iteration, if the algorithm goes on to the (t + 1)-th iteration, then

‖αt+1
i −αt

i ‖2 ≥ ε0. Let s′ = argmaxs |αt+1
is − αt

is |, and it follows that (αt+1
is′ −αt

is′)
2 ≥ ε20|Ri | ,

which is the lower bound for themaximum change in the elements of αi in t-th iteration. Now,
we will consider three cases in the updating formula (37) to get the bound for the change in
the objective function given the change in the s′th element of αi , i.e., αis′ .

According to the Taylor’s Theorem, we obtain

P(αt+1
is′ ) − P(αt

is′) = αt
is′ − Rs′(1 + λ1)

1 + λ1
(αt+1

is′ − αt
is′)

+ 1

2(1 + λ1)
(αt+1

is′ − αt
is′)

2
(38)

When 0 ≤ Rs′(1 + λ1) ≤ λ4, αt+1
is′ = Rs′(1 + λ1), thereby the change in the objective

function is
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P(αt+1
is′ ) − P(αt

is′) = αt
is′ − αt+1

is′
1 + λ1

(αt+1
is′ − αt

is′) + 1

2(1 + λ1)
(αt+1

is′ − αt
is′)

2

= − (αt+1
is′ − αt

is′)
2

1 + λ1
+ 1

2(1 + λ1)
(αt+1

is′ − αt
is′)

2

= − 1

2(1 + λ1)
(αt+1

is′ − αt
is′)

2 ≤ − ε20

2|Ri |(1 + λ1)

(39)

When Rs′(1 + λ1) > λ4, α
t+1
is′ = λ4. Also, since 0 ≤ αt

is′ ≤ λ4, αt
is′ ≤ αt+1

is′ . The change in
the objective function is

P(αt+1
is′ ) − P(αt

is′) =αt
is′ − αt+1

is′ + αt+1
is′ − Rs′(1 + λ1)

1 + λ1
(αt+1

is′ − αt
is′)

+ 1

2(1 + λ1)
(αt+1

is′ − αt
is′)

2

= − 1

2(1 + λ1)
(αt+1

is′ − αt
is′)

2 + αt+1
is′ − Rs′(1 + λ1)

1 + λ1
(αt+1

is′ − αt
is′)

≤ − 1

2(1 + λ1)
(αt+1

is′ − αt
is′)

2 ≤ − ε20

2|Ri |(1 + λ1)
,

(40)
since (αt+1

is′ − Rs′(1 + λ1))(α
t+1
is′ − αt

is′) ≤ 0.

Similarly, when Rs′(1 + λ1) < 0, αt+1
is′ = 0, and αt

is′ ≥ αt+1
is′ . We still have (αt+1

is′ −
Rs′(1 + λ1))(α

t+1
is′ − αt

is′) ≤ 0, and it follows that the change in the objective function is

P(αt+1
is′ ) − P(αt

is′) ≤ − 1

2(1 + λ1)
(αt+1

is′ − αt
is′)

2 ≤ − ε20

2|Ri |(1 + λ1)
. (41)

Based on (39), (40), and (41), the change in the objective function given the change in αis′

is bounded from above by − ε20
2|Ri |(1+λ1)

after the t-th iteration.

Moreover, let P0 = P(α0
i ) be the initial value of the objective function, and then, the differ-

ence between the initial value and the optimal value of the objective function is P0−P∗ < ∞.

Therefore, after at most

⎡

⎢
⎢
⎢

P0−P∗
ε20

2|Ri |(1+λ1)

⎤

⎥
⎥
⎥

=

⌈
2|Ri |(P0−P∗)(1+λ1)

ε20

⌉
iterations, Algorithm 2 con-

verges. ��

We run Algorithm 2 for i = 1 . . . n to obtain the entire S, and the computation of S can
be parallelized by computing {Si } separately. Moreover, according to Theorem 2, let ε0 be
the stopping threshold of the coordinate descent method in Algorithm 2, |Ri | is the number

of constraints in Si , Algorithm 2 converges after at most

⌈
2|Ri |(P0−P∗

i )(1+λ1)

ε20

⌉
iterations,

where P0 = P(α0
i ) = 0, P∗

i is minimum value of the objective function for the dual problem

(32). Therefore, the time complexity for computing Si is O(|Ri |2
⌈
2|Ri ||P∗

i |(1+λ1)

ε20

⌉
+ rn).

Let Rmax = max1≤i≤n Ri be the maximum number of constraints across all the rows of S,
P∗
min = min1≤i≤n P∗

i , then the time complexity for completing the entire S sequentially is

O(n|Rmax|2
⌈
2|Rmax||P∗

min|(1+λ1)

ε20

⌉
+ rn2).
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Table 2 The detailed statistics of
the data sets

DBLP DBLP-clean CoRA

Number of node 28,702 2760 15,644

Number of edge 133,664 7636 59,062

Number of node with label 4057 2760 15,644

Number of class 4 4 10

Content dimensionality 13,214 13,214 12,313

7 Experimental results

In this section, several experimental results are presented on different data sets in order
to validate the effectiveness and efficiency of the proposed FSL method. We also present
robustness results in terms of parameter sensitivity and noise tolerance. The performance of
our FSL approach on two real data sets and one synthetic data set outperforms other existing
off-the-shelf methods significantly.

7.1 Data sets

The detailed descriptions of the data sets are as follows:
DBLP-Four-Areas Data set DBLP is an online collection of computer science. It is a source
of cross-genre information, including content (e.g., keywords of papers) and links (e.g., co-
author relationships and user friendships). In this paper, we use the DBLP subset from [10],
which contains 28,569 research papers from 28,702 authors, published in 20 conferences.
The content information for each paper is extracted from its abstract and represented using a
bag of words. Moreover, 4057 authors are labeled by four areas, corresponding to database,
data mining, information retrieval, and artificial intelligence.
Clean DBLP Data set A cleaned version of the DBLP-Four-Areas Data set [10] is also
extracted from the original data set. This cleaned data set, removing all the authors who do
not have any connection with others or have any labels, includes 2760 authors and labeled
by four areas. It is utilized to analyze the performance of the proposed algorithm and verify
the robustness on parameter selection.
CoRA Data set This data set is comprised of computer science research papers and includes
full citation graph and the topics (and sub-, sub-subtopics) of each paper [25], resulting in
over 80 labels. Instead of using such a huge label space, we used the hierarchical structure
of the labels provided by the data set and used the higher- level labels. In our setting, there
are 10 group labels, to identify the class of each paper.
Summary statistics of the data sets are illustrated in Table 2.

7.2 Baseline methods

We compared our proposed method with a number of state-of-the-art algorithms including
the following:
Euclidean Metric: The standard Euclidean distance between content vectors measures the
inverse of the similarity between two nodes.
PMF [27]: Probabilistic Matrix Factorization treats the link matrix L as the utility matrix
to complete. PMF only utilizes the existing linkage information as observed entries. The
stronger a link between a pair of nodes, the greater the similarity between them.
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NMF [29]: Nonnegative Matrix Factorization is similar to PMF in which the link matrix L
is used to be completed.
LAD [20]: Locally Adaptive Decision function learning uses both content and supervision
information to learn a local nonisotropic similarity function beyond the traditional generalized
Mahalanobis metric.
CFSL: Content-based Factorized Similarity learning is a special case of ourFSL algorithmby
setting λ4 = 0 in Eq. (22). CFSL is still able to incorporate both link and content information
in a globally factorized manner.
SSMetric [14]: Semi-supervised Metric learning incorporates knowledge from sparse link-
age information and used as neighborhood graph. It is a variant of the originally proposed
method, which is modified to allow it to use the linkage structure. The intensional knowledge
can be propagated through the link graph L to learn a distance metric on the content vector
space.

In summary, the first two baselines learn a similarity measure based only on content or
linkage information in an unsupervised manner. LAD utilizes both content and supervised
knowledge. CFSL evaluates the proximity on both contents and links. SSMetric is similar to
our method in terms of incorporating different information sources on content, linkages, and
supervision.

7.3 Experimental settings

In our experiments, we simulated the real-world scenario on similarity learning as a retrieval
problem [22,32]. We start by explaining the experimental settings with an example. As
illustrated in Fig. 4, we divide all pair-wise nodes into two disjointed group parameterized
by two variables pv and ph indicating the level of supervision. For instance, if ph = 0.5, and
pv = 0.6, then it means 0.5 + 0.6 × (1 − 0.5) = 80 % of entries are provided supervised
knowledge, and the remaining 20 % do not have any information about relative ordering. It
is worth mentioning that, if we divide the training and testing portions into portions of size
80 and 20 %, it does not mean that the full triplet constraints will bef given for the training
region. Another hyperparameter s controls the number of triplet orderings provided for the
training region. In our experiments, s is usually set to the range of 5–20.

Since the ground truth provided in both the DBLP and CoRA data sets is explicit multi-
class labels, we need to convert them into triplet constraints. One way of achieving this is to
generate triplet constraints, by setting nodes with a same label as similar pair and a different
label as dissimilar one. In other words, the triplet constraint (i, j, k) ∈ S is generated by
randomly choosing two nodes vi and v j with the same label. And vk has a different label
with vi and v j .

The implementations of LAD and SSMetric methods use pair-wise constraints instead
of triplets. Although straightforward conversions exist from pair-wise settings to triplet in
the most of metric learning-based algorithms, we obey their original implementation by
converting triplet constraint to pair-wise in the following way: Each triplet constraint (i, j, k)
is split into two different sets that is (vi , v j ) as a similar pair and (vi , vk) as a dissimilar
pair. Another issue for these two baselines is that they are not able to scale up to a high-
dimensional setting. Therefore, we perform principal component analysis (PCA) to reduce
the dimensionality to 1,000 as a preprocessing step.

For each data set, we initialize our similarity matrix S by the link matrix L with a small
constant value to each entry. The purpose of adding a small constant value in S is to prevent
a row or a column of S without any initial value. Adding a constant value to every entry of
the similarity matrix will not affect the performance, since we only emphasize the ordered
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Fig. 4 The experiment settings: yellow region indicates the training, while blue is the testing entries

information instead of the explicit entry-wise values. Similar initialization is conducted on
the bridging matrix T as well. To initialize the low-rank matrix U , V , and W , we use a
Laplace distribution [17] with zero mean and a scale parameter value of one. In addition, the
content matrix C and the link matrix L are normalized to remove the scale variations.

7.4 Evaluation measurements

In most recommendation and link prediction applications, the recommended items or the
retrieval results are usually presented as the top-k most similar candidates to the query.
In this case, the accumulated top-k precision and the normalized discounted cumulative
gain (NDCG) [24] evaluate the performance effectively among a wide variety of measures.
However, in order to compute the NDCG score, we are required to provide a completed
ordering information as the ground truth, which is inapplicable to our experimental settings.
The precision for a particular value of k is computed as follows:

P@k = | relevant document ∩ retrieved document|
| retrieved document | @k.

We averaged the precision across different query nodes in the network and used it as the
evaluation metric for our experiments.

7.5 Results

In this section,wepresent the results fromour proposedFSL approach and the aforementioned
baseline methods on bothDBLP and CoRA data sets. All experimental results were averaged
over 10 different runs.
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7.5.1 DBLP

According to our experimental settings, we provide each node 30 triplet constraints as the
intensional knowledge and report the comparative performance with other baseline methods
in Fig. 5. It is evident that the proposed method achieves the best performance across all
ranges of the ranks tested. On the other hand, link-based methods as PMF andNMF achieved
the poorest performance. The other methods achieved intermediate performance. The LAD
method achieves the second best performance for learning similarity between authors in the
publication network.

An interesting observation is that all methods using linkage information performed worse
than the content-based methods, except for the proposed FSL scheme. The reason for this
is that the noisy links can often hurt the proximity approximation. Predictions from PMF
and NMF methods are based only on the sparse noisy links without any global content
bias. CFSL utilizes both content and linkage information. However, the noise encoded in
the linkage structure prevents good prediction results. SSMetric is similar to the proposed
FSL method which uses linkage, content, and supervision simultaneously. However, it is
particularly poor at handling noise, because of its inability to prevent similarity propagation
along noisy links.

The LAD algorithm incorporates the supervised information to learn semantic proximities,
which outperform unsupervised content methods. However, the useful informationwithin the
linkage structure can not be utilized to enhance the performance. The proposedFSL approach
is able to identify these unreliable links and eliminate their contributions by transferring and
fusing the knowledge from content and supervision. In such a way, influential links can be
emphasized, so that FSL achieves the best performance.

7.5.2 CoRA

Since theCoRA data set is somewhat smaller thanDBLP in terms of the number of nodes and
links, we only provided 15 supervised examples per node. We reported the top 50 retrieval
results for each baseline method in Fig. 6. We obtain similar results to the DBLP data set,
on which the linkage-based method performed poorly. The PMF and NMF methods obtain
the worst result. Although the performance of CFSL and SSMetric is comparable with the
standard Euclidean metric, they are still not quite in the same league as the LAD approach.

The proposed method outperforms LAD by more than 10%, starting from rank 5, and
retains this performance beyond this point. It shows that the proposed FSL method not only
estimates the proximity of top candidates correctly, but it also retains a very high recall in
the retrieval tasks. Our proposed method is very robust, in terms of the similarity learning
across different data sets.

7.5.3 Discussion

Comparing the experimental results we obtained from Figs. 5 and 6, we discover that the
precision decreases much slower with k increases for the DBLP data set. Specifically, the
precision of our proposed method at 50 for the DBLP data set still remains around 0.85,
while the CoRA data set only has 0.7 left. Similar observations are also reflected from other
baselines. This is due to the number of classes for the CoRA data set is significantly larger
than the one in the DBLP data set. In addition, the labels’ granularity is much finer for the
CoRA data set, which imposes huge challenges to correctly retrieve other “similar” nodes.
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Fig. 6 P@k curve on the CoRA data set

Although the absolute precision of our model for the CoRA data set is lower than the one
in the DBLP data set, the relative performance between our algorithm and the second best
performed method is much better. This implies that our performance drops much slower
comparing to other baselines when the retrieval task getting much harder.
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7.6 Parameter sensitivity

Themain parameters of the proposedFSL algorithm are the weight parameters λi , the portion
of supervision information s (the number of constraints provided in training for each user),
and the rank of matrices U and V (denoted as R). To validate the robustness of parameters
and analyze the effect of each parameter on the final result, a group of experiments were
conducted on the Clean DBLP Data set. It is a small data set, obtained by cleaning all
the noise from DBLP, and contains links, content, and four classes. We use the strategy in
Sect. 7.3 to generate supervision information.

7.6.1 Control parameters λi

The performance with varying λ1 is shown in Fig. 7, in which λ2 is fixed at 7, R = 10, and
s = 12. λ1 controls the importance of linkage information considered in factorization. As
shown in Fig. 7, the performance is stable when λ1 ≥ 1. The results suggest that as long
as sufficient linkage information is provided, the content similarity and supervision can be
robustly propagated along the topological structure.

Similarly, the effect of λ2 is shown in Fig. 8, and the performance is robust to parameter
setting when λ2 > 3. It validates the importance of global (content) information on simi-
larity learning, as hypothesized in Sect. 1. The robustness in parameter choice reflects how
optimality is achieved with the help of underlying topological structure spread with linkage
information.

A comparison between Figs. 7 and 8 yields some interesting observations:

– when λ1 increases, the performance drops slightly;
– when λ2 increases, the performance improves slightly.

This observation is in agreement with our experimental results in Sect. 7.5. For this particular
task assignment, linkage information is not as useful as content similarity.

7.6.2 Supervision s

Figure 9 shows the effect of supervision on the FSL algorithm, fixing λ1 = 1.5, λ2 = 7, and
R = 10. It is obvious that given a certain number of constraints for each user, i.e., s > 10, the
performance is fairly stable regardless of the value of s. These results suggest the following:
s increases: As more supervision is provided, the FSL algorithm will adjust the topological
structure of networks relying on trustworthy guidance. In this situation, the information
propagation will be more efficient. On the other hand, diminishing returns are achieved for
increasing s beyond a certain point.
s is small: In this case, the algorithm focuses most of its efforts on fitting a small portion of
supervision. This has a detrimental impact on the whole structure of the network. As a result,
the performance is not very good in this range.

In this experiment, the percentage of supervision is ps = s/N (U ), which is approximately
4×10−4. This is much smaller than a typical social network, e.g., Facebook, where there are
hundreds of labeled links (i.e., friendships) on average for each user. Therefore, the algorithm
is practical in real-world scenario.

7.6.3 Low-rank approximation: R

Finally, the effect of matrix rank R is shown in Fig. 10. As observed from figure, the perfor-
mance increases stably after R ≥ 8. Considering the fact that the samples in the DBLP data
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set are labeled with 4 classes, it is feasible to assume R > 4. Typically, the value assignment
of rank R is application dependent.

7.7 Noise tolerance

In this section, we present the performance on error tolerance using the large-margin for-
mulation proposed in Eq. (21) on the DBLP-clean data set. We tested the FSL method with
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different levels of noise in the supervision in Fig. 11. The color of the histogram indicates
the level of noise injection. Furthermore, the different groups in the histogram show the
retrieval result at different ranks. We observe that when the noise level is small (1% or 5%)
the proposed method maintains very good results, and the retrieval precision decreases very
slowly with increasing rank. However, when the noise level becomes high, the FSL method
obtains a poor recall. Overall, Fig. 11 demonstrates that our proposed method is robust to a
small level of error tolerance.
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7.7.1 Efficient solution by the dual

Directly solving the primal problem (23) needs to handle n2 elements of S by the sub-
gradient method. In contrast, the efficient dual solver only deals with |Ri | variables for
each row of S, with a total of n|Ri | variables, and it leads to a much more efficient
solution. We perform the comparison of computational time between the optimization
of (23) in the primal form using subgradient versus the dual form using quadratic pro-
gramming by coordinate descent. Figure 12 shows the comparison of the computational
time using fixed number of users n = 104, with the number of constraints varies within
{1, 100, 200, . . . , 1000}. It is observed that the dual method always needs less time than
the primal method. In addition, both of them take more time with the increasing num-
ber of constraints. With more constraints, more computational cost arises when computing
the subgradient for the primal method, and there are more variables in the dual method.
Figure 13 illustrates the comparison of the computational time using fixed number of
constraints, i.e., |Ri | = 100 for all rows of S, with the number of users varies within
{104, 105, 2 × 105, . . . , 106}. In this case, the number of variables for the dual method is
fixed, and the number of variables for the primal method increases quadratically with the
number of users. We can see that the dual method is significantly faster than the primal
method. Also, the computational time of the dual method increases with more and more
users, since the dual method still needs to compute Qi , ri , and Si for each row of S (please
refer to Sect. 6.2).

Note that the rows of S can be computed separately. In both comparisons, the first 300
rows of S are computed, and the Frobenius norm of the difference of S computed using
the primal and the dual is always less than 10−7. The maximum number of iterations for
the subgradient method in the primal and the coordinate descent in the dual is 200. We
perform the comparisons on a Desktop with 16 GB memory and Intel i7-4770 3.4 GHz
CPU.
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8 Conclusion

In this paper, we proposed a novel learning approach, known as FSL, to measure the node-
based similarity in networks within a matrix factorization framework. We propose a holistic
model, which leverages network topological structure, node content, and user supervision.
The proposed method is able to ameliorate the impact of noisy linkage structures by fusing
and transferring knowledge from other domains. At the same time, the reliable linkages are
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used effectively in conjunction with content and user supervision. By embedding content
and links into a unified latent space, the supervision can correctly guide the factorization
process. We show extensive experiments on real-world data sets. The proposed FSL method
significantly outperforms other state-of-the-art approaches in node-based retrieval and is
highly robust and efficient.
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