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Abstract. Subspace clustering methods with sparsity prior, such as S-
parse Subspace Clustering (SSC) [1], are effective in partitioning the
data that lie in a union of subspaces. Most of those methods require
certain assumptions, e.g. independence or disjointness, on the subspaces.
These assumptions are not guaranteed to hold in practice and they limit
the application of existing sparse subspace clustering methods. In this
paper, we propose ℓ0-induced sparse subspace clustering (ℓ0-SSC). In
contrast to the required assumptions, such as independence or disjoint-
ness, on subspaces for most existing sparse subspace clustering methods,
we prove that subspace-sparse representation, a key element in subspace
clustering, can be obtained by ℓ0-SSC for arbitrary distinct underlying
subspaces almost surely under the mild i.i.d. assumption on the data gen-
eration. We also present the “no free lunch” theorem that obtaining the
subspace representation under our general assumptions can not be much
computationally cheaper than solving the corresponding ℓ0 problem of
ℓ0-SSC. We develop a novel approximate algorithm named Approximate
ℓ0-SSC (Aℓ0-SSC) that employs proximal gradient descent to obtain a
sub-optimal solution to the optimization problem of ℓ0-SSC with theo-
retical guarantee, and the sub-optimal solution is used to build a sparse
similarity matrix for clustering. Extensive experimental results on vari-
ous data sets demonstrate the superiority of Aℓ0-SSC compared to other
competing clustering methods.
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1 Introduction

High dimensional data often lie in a set of low-dimensional subspaces in many
practical scenarios. Based on this observation, subspace clustering algorithms
[2] aim to partition the data such that data belonging to the same subspace
are identified as one cluster. Among various subspace clustering algorithms, the
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ones that employ sparsity prior, such as Sparse Subspace Clustering (SSC) [1],
have been proven to be effective in separating the data in accordance with the
subspaces that the data lie in under certain assumptions.

Sparse subspace clustering methods construct the sparse similarity graph
by sparse representation of the data, where the vertices represent the data.
Subspace-sparse representation ensures that vertices corresponding to differen-
t subspaces are disconnected in the sparse similarity graph, leading to their
compelling performance with spectral clustering [3] applied on such graph. El-
hamifar and Vidal [1] prove that when the subspaces are independent or dis-
joint, subspace-sparse representations can be obtained by solving the canonical
sparse coding problem using data as the dictionary under certain conditions on
the rank, or singular value of the data matrix and the principle angle between
the subspaces. Under the independence assumption on the subspaces, low rank
representation [4,5] is also proposed to recover the subspace structures. Relax-
ing the assumptions on the subspaces to allowing overlapping subspaces, the
Greedy Subspace Clustering [6] and the Low-Rank Sparse Subspace Clustering
[7] achieve subspace-sparse representation with high probability. However, their
results rely on the semi-random model or full-random model which assumes that
the data in each subspace are generated i.i.d. uniformly on the unit sphere in
that subspace as well as certain additional conditions on the size and dimen-
sionality of the data. In addition, the geometric analysis in [8] also adopts the
semi-random model and it handles overlapping subspaces. Noisy SSC proposed
in [9] handles noisy data that lie in disjoint or overlapping subspaces.

To avoid the non-convex optimization problem incurred by ℓ0-norm, most of
the sparse subspace clustering or sparse graph based clustering methods use ℓ1-
norm [10,11,12,1,13,14] or ℓ2-norm with thresholding [15] to impose sparsity on
the constructed similarity graph. In addition, ℓ1-norm has been widely used as a
convex relaxation of ℓ0-norm for efficient sparse coding algorithms [16,17,18]. On
the other hand, sparse representation methods such as [19] that directly opti-
mize objective function involving ℓ0-norm demonstrate compelling performance
compared to its ℓ1-norm counterpart. It remains an interesting question whether
sparse subspace clustering equipped with ℓ0-norm, which is the origination of the
sparsity that counts the number of nonzero elements, has advantage in obtaining
the subspace-sparse representation. In this paper, we propose ℓ0-induced sparse
subspace clustering which employs ℓ0-norm to enforce the sparsity of representa-
tion, and present a novel Aℓ0-SSC for optimization. This paper offers two major
contributions:

1 We propose the ℓ0-induced Subspace Subspace Clustering method
and prove that it almost surely renders the desired subspace-sparse
representation. We present the theory of the ℓ0-induced sparse subspace
clustering (ℓ0-SSC), which shows that ℓ0-SSC gives subspace-sparse repre-
sentation almost surely under minimum assumptions on the underlying sub-
spaces the data lie in, i.e. subspaces are distinct. To the best of our knowl-
edge, this is the mildest assumption on the subspaces compared to most
existing sparse subspace clustering methods. Furthermore, our theory pre-
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sented in Theorem 1 assumes that the data in each subspace are generated
i.i.d. from arbitrary continuous distribution supported on that subspace,
which is milder than the assumption of semi-random model in [6] and [7]
that assume the data are i.i.d. uniformly distributed on the unit sphere in
each subspace. Moreover, we prove that under the general conditions in The-
orem 1, finding subspace representation can not be computationally cheaper
than solving the corresponding ℓ0 problem. In fact, if there is an algorithm
that obtains subspace representation for each data point, then it can be used
to get the optimal solution to the ℓ0 problem for ℓ0-SSC by an additional
step of polynomial complexity.

2 We propose Approximate ℓ0-SSC to efficiently obtain an approx-
imate solution to the problem of ℓ0-SSC with theoretical guaran-
tee. The optimization problem of ℓ0-SSC is NP-hard and it is impractical
to directly pursue the global optimal solution. Instead, we develop an ap-
proximate algorithm named Approximate ℓ0-SSC (Aℓ0-SSC) which obtains
a sub-optimal solution for ℓ0-SSC by proximal gradient descent method with
theoretical guarantee. Under certain assumptions on the sparse eigenvalues
of the data, the sub-optimal solution by Aℓ0-SSC is a critical point of the o-
riginal objective, and the bound for the ℓ2-distance between such sub-optimal
solution and the global optimal solution is given. It should be emphasized
that the techniques we develop to derive such bound could be applied to
more general optimization problems of sparse coding using proximal gradi-
ent descent, so as to obtain the gap between the sub-optimal solution and
the global solution to the associated ℓ0 problem.

Similar to SSC, the sub-optimal solution by Aℓ0-SSC is used to build a sparse
similarity matrix upon which spectral clustering is performed to obtain the data
clusters. Extensive experimental results on various real data sets show the im-
pressive performance of Aℓ0-SSC compared to other competing clustering meth-
ods including SSC.

The remaining parts of the paper are organized as follows. The representa-
tive subspace clustering methods, SSC [1], are introduced in the next subsection.
The theoretical property of ℓ0-SSC, detailed formulation of Aℓ0-SSC and theo-
retical guarantee on the obtained sub-optimal solution are illustrated. We then
show the clustering performance of the proposed models, and conclude the pa-
per. We use bold letters for matrices and vectors, and regular lower letter for
scalars throughout this paper. The bold letter with superscript indicates the
corresponding column of a matrix, and the bold letter with subscript indicates
the corresponding element of a matrix or vector. ∥ · ∥F and ∥ · ∥p denote the
Frobenius norm and the ℓp-norm, and diag(·) indicates the diagonal elements of
a matrix.

1.1 Sparse Subspace Clustering and ℓ1-Graph

SSC [1] and ℓ1-graph [10,11] employ the broadly used sparse representation
[20,21,22,13] of the data to construct the sparse similarity graph. With the data
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X = [x1, . . . ,xn] ∈ IRd×n where n is the size of the data and d is the dimension-
ality, SSC and ℓ1-graph solves the following sparse coding problem:

min
α

∥α∥1 s.t. X = Xα, diag(α) = 0 (1)

Both SSC and ℓ1-graph construct a sparse similarity graph G = (X,W) where
the data X are represented as vertices, W of size n×n is the weighted adjacency
matrix of G, and Wij indicates the edge weight, or the similarity between xi

and xj , W is a sparse similarity matrix set by the sparse codes α as below:

Wij = (|αij |+ |αji|)/2 1 ≤ i, j ≤ n (2)

There is an edge between xi and xj if and only if Wij ̸= 0. Furthermore, if the
underlying subspaces that the data lie in are independent or disjoint, Elhami-
far and Vidal [1] proves that the optimal solution to (1) is the subspace-sparse
representation under several additional conditions. The sparse representation αi

is called subspace-sparse representation if the nonzero elements of αi, namely
the sparse representation of the datum xi, correspond to the data points in the
same subspace as xi. Therefore, vertices corresponding to different subspaces
are disconnected in the sparse similarity graph. With the subsequent spectral
clustering [3] applied on such sparse similarity graph, compelling clustering per-
formance is achieved. Allowing some tolerance for inexact representation, robust
sparse subspace clustering methods such as [9,23] turn to solve the following
Lasso-type problem for SSC and ℓ1-graph:

min
α

∥α∥1 s.t. ∥X −Xα∥F ≤ δ, diag(α) = 0

which is equivalent to the following problem

min
α

∥X −Xα∥2F + λℓ1∥α∥1 s.t. diag(α) = 0 (3)

where λℓ1 > 0 is a weighting parameter for the ℓ1 term.

Table 1. Assumptions on the subspaces and random data generation (for randomized
part of the algorithm) for different subspace clustering methods. D1 means the data
in each subspace are generated i.i.d. uniformly on the unit sphere in that subspace,
and D2 means the data in each subspace are generated i.i.d. from arbitrary continuous
distribution supported on that subspace. Note that S1 < S2 < S3 < S4, D1 < D2,
where the assumption on the right hand side of < is milder than that on the left hand
side. The methods that are based on these assumptions are listed as follows. S1: [4,5];
S2:[1]; S3:[6,7,9,8]; D1: [6,7,8,23].

Assumption on Subspaces Explanation

S1:Independent Subspaces Dim[S1 ⊕ S2 . . .SK ] =
∑
k

Dim[Sk]

S2:Disjoint Subspaces Sk ∩ S
k′ = 0 for k ̸= k′

S3:Overlapping Subspaces 1 ≤ Dim[Sk ∩ S
k′ ] < min{Dim[Sk],Dim[S

k′ ]} for k ̸= k′

S4:Distinct Subspaces (ℓ0-SSC) Sk ̸= S
k′ for k ̸= k′

Assumption on Random Data Generation Explanation

D1:Semi-Random Model or Full-Random Model i.i.d. uniformly on the unit sphere.

D2:IID (ℓ0-SSC) i.i.d. from arbitrary continuous distribution.
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2 ℓ0-Induced Sparse Subspace Clustering

In this paper, we propose ℓ0-induced Sparse Subspace Clustering (ℓ0-SSC), which
solves the following ℓ0 problem:

min
α

∥α∥0 s.t. X = Xα, diag(α) = 0 (4)

And the solution to the above problem is used to build a sparse similarity
graph for clustering. We then give the theorem about ℓ0-induced almost surely
subspace-sparse representation, and the proof is presented in the supplementary
document for this paper.

Theorem 1 (ℓ0-Induced Almost Surely Subspace-Sparse Representation) Sup-
pose the data X = [x1, . . . ,xn] ∈ IRd×n lie in a union of K distinct subspaces
{Sk}Kk=1 of dimensions {dk}Kk=1, i.e. Sk ̸= Sk′ for k ̸= k′. Let X(k) ∈ IRd×nk

denote the data that belong to subspace Sk, and
K∑

k=1

nk = n. When nk ≥ dk+1, if

the data belonging to each subspace are generated i.i.d. from arbitrary unknown
continuous distribution supported on that subspace,1 then with probability 1, the
optimal solution to (4), denoted by α∗, is a subspace-sparse representation, i.e.
nonzero elements in α∗i corresponds to the data that lie in the same subspace
as xi.

Proof (Sketch of the proof). It can be verified that that the probability measure
of “inter-subspace hyperplane” is 0, and we defer the details to the supplemen-
tary.

According to Theorem 1, ℓ0-SSC (4) obtains the subspace-sparse representation
almost surely under minimum assumption on the subspaces, i.e. it only requires
that the subspaces be distinct. To the best of our knowledge, this is the mildest
assumption on the subspaces for most existing sparse subspace clustering meth-
ods. Moreover, the only assumption on the data generation is that the data in
each subspace are i.i.d. random samples from arbitrary continuous distribution-
s supported on that subspace. In the light of assumed data distribution, such
assumption on the data generation is much milder than the assumption of the
semi-random model in [6,7,8] (note that the data can always be normalized to
have unit norm and reside on the unit sphere). Table 1 summarizes different as-
sumptions on the subspaces and random data generation for different subspace
clustering methods including sparse subspace clustering methods. It can be seen
that ℓ0-SSC has mildest assumption on both subspaces and the random data
generation. Note that Theorem 1 is also free from the geometric assumptions
such as those involving subspace incoherence in [7,8].

The ℓ0 sparse representation problem (4) is known to be NP-hard. One may
ask if there is a shortcut to the almost surely subspace-sparse representation
under the conditions in Theorem 1. We show that such shortcut is almost surely

1
Continuous distribution here indicates that the data distribution is non-degenerate in the sense
that the probability measure of any hyperplane of dimension less than that of the subspace is 0.
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impossible. Namely, suppose there is an algorithm which, for each data point xi,
can find the data from the same subspace as xi that linearly represent xi, then
such representation almost surely leads to the solution to the ℓ0 problem:

min
αi

∥αi∥0 s.t. xi = Xαi, αii = 0 (5)

Theorem 2 (There is “no free lunch” for obtaining subspace representation
under the general conditions of Theorem 1) Under the assumptions of Theorem 1,
if there is an algorithm which, for any data point xi ∈ Sk, 1 ≤ i ≤ n, 1 ≤ k ≤ K,
can find the data from the same subspace as xi that linearly represent xi, i.e.

xi = Xβ (βi = 0) (6)

where nonzero elements of β correspond to the data that lie in the subspace Sk.
Then, with probability 1, solution to the ℓ0 problem (5) can be obtained from β
in O(n̂3) time, where n̂ is the number of nonzero elements in β.

Therefore, we have the interesting “no free lunch” conclusion: with probability
1, finding the subspace representation for each data point xi can not be much
computationally cheaper than solving the ℓ0 sparse representation (5).

It should be emphasized that our theoretical results on ℓ0-SSC is significant-
ly different from that in [24]. First, our results are developed under the widely
used randomized subspace clustering models, while the recovered subspaces are
supposed to form a minimal union-of-subspace structure in [24]. In addition,
Theorem 1 shows that any global optimal solution to ℓ0-SSC can almost sure-
ly recover any unknown underlying subspaces, considering that there can be
multiple globally optimal solutions to ℓ0-SSC. In contrast, given an underly-
ing unknown minimal union-of-subspace structure, [24] does not show which
globally optimal solution to ℓ0-SSC can recover such minimal union-of-subspace
structure.

Note that SSC-OMP [25] adopts Orthogonal Matching Pursuit (OMP) [26]
to choose neighbors for each datum in the sparse similarity graph, which can be
interpreted as approximately solving the ℓ0 problem (5) for 1 ≤ i ≤ n. However,
SSC-OMP does not present the nice theoretical properties of the ℓ0-SSC shown
above. Moreover, we give the theory about the distance between the sub-optimal
solution by our Aℓ0-SSC and the global optimal solution to the ℓ0-SSC problem
under the assumption on the sparse eigenvalues of the data matrix. Extensive
experimental results show the significant performance advantage of Aℓ0-SSC over
the SSC-OMP.

3 Approximate ℓ0-SSC (Aℓ0-SSC)

Solving the ℓ0-SSC problem exactly is NP-hard, therefore, we introduce an ap-
proximate algorithm for ℓ0-SSC in this section with theoretical guarantee.
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3.1 Optimization of Aℓ0-SSC

Similar to the case of SSC and ℓ1-graph, by allowing tolerance for inexact rep-
resentation, we turn to optimize the following ℓ0 problem 2 for ℓ0-SSC.

min
α∈IRn×n,diag(α)=0

L(α) = ∥X −Xα∥2F + λ∥α∥0 (7)

Problem (7) is NP-hard, and it is impractical to seek for its global optimal
solution. The literature extensively resorts to approximate algorithms, such as
Orthogonal Matching Pursuit [26], or that use surrogate functions [27], for ℓ0

problems. In this paper we present Aℓ0-SSC that employs proximal gradient de-
scent (PGD) method to optimize (7) and obtains a sub-optimal solution with
theoretical guarantee. The sub-optimal solution is used to build a sparse simi-
larity matrix for clustering. In the following text, the superscript with bracket
indicates the iteration number of PGD. Note that problem (7) is equivalent to
a set of problems

min
αi∈IRn,αi

i=0
L(αi) = ∥xi −Xαi∥22 + λ∥αi∥0 (8)

for 1 ≤ i ≤ n. We describe PGD for optimizing L(αi) with respect to the
sparse code of the i-th data point, i.e. αi, for any 1 ≤ i ≤ n. We initialize α as
α(0) = αℓ1 and αℓ1 is the sparse codes generated by solving (3) with λℓ1 = λ.
The data matrix X is normalized such that each column has unit ℓ2-norm.

In t-th iteration of PGD for t ≥ 1, gradient descent is performed on the
squared loss term of L(αi), i.e. Q(αi) = ∥xi −Xαi∥22, to obtain

α̃i
(t)

= αi(t−1) − 2

τs
(X⊤Xαi(t−1) −X⊤xi) (9)

where τ is any constant that is greater than 1. s is the Lipschitz constant for the
gradient of function Q(·). s is usually chosen as two times the largest eigenvalue
of X⊤X. Due to the sparsity of αi, it is shown in Lemma 1 that s can be
much smaller which also ensures the shrinkage of the support of the sequence

{αi(t)}t and the decline of the objective function. αi(t) is then the solution to
the following ℓ0 regularized problem:

αi(t) = argmin
v∈IRn,vi=0

τs

2
∥v − α̃i

(t)
∥22 + λ∥v∥0 (10)

It can be verified that (10) has closed-form solution, and the j-th element of

αi(t) is

αi
j
(t)

=

 0 : |α̃i
j

(t)
| <

√
2λ
τs

or i = j

α̃i
j

(t)
: otherwise

(11)

for 1 ≤ j ≤ n. The iterations start from t = 1 and continue until the sequence

{L(αi(t))}t or {αi(t)}t converges or maximum iteration number is achieved,

2
Even one would stick to the very original formulation without noise tolerance, (4) is still equivalent
to (7) with some Lagrangian multiplier λ.
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then a sub-optimal solution is obtained. A sparse similarity matrix is built by
the sub-optimal solution upon which spectral clustering is performed to get the
clustering result, as described in Algorithm 1 for Aℓ0-SSC. The time complexity
of PGD method is O(Mn2) where M is the number of iterations (or maximum
number of iterations) for PGD.

Algorithm 1 Data Clustering by Approximate ℓ0-SSC (Aℓ0-SSC)

Input:
The data set X = {xi}ni=1, the number of clusters c, the parameter λ for Aℓ0-SSC,
maximum iteration number M , stopping threshold ε.

1: Initialize the coefficient matrix as α(0) = αℓ1 .
2: for 1 ≤ i ≤ n do
3: Obtain the sub-optimal solution α̃i by PGD with (9) and (11) starting from

t = 1. The iteration terminates either {αi(t)}t or {L(αi(t))}t converges under the
threshold ε or maximum iteration number is achieved (note that the optimization
for 1 ≤ i ≤ n is performed in parallel).

4: end for
5: Obtain the resultant coefficient matrix α̃ where the i-th column is α̃i.
6: Build the sparse similarity matrix by symmetrizing α̃: W̃ = |α̃|+|α̃⊤|

2
, compute the

corresponding normalized graph Laplacian L̃ = (D̃)−
1
2 (D̃ − W̃)(D̃)−

1
2 , where D̃

is a diagonal matrix with D̃ii =
n∑

j=1

W̃ij

7: Construct the matrix v = [v1, . . . ,vc] ∈ IRn×c, where {v1, . . . ,vc} are the c eigen-
vectors of L∗ corresponding to its c smallest eigenvalues. Treat each row of v as a
data point in IRc, and run K-means clustering method to obtain the cluster labels
for all the rows of v.

Output: The cluster label of xi is set as the cluster label of the i-th row of v,
1 ≤ i ≤ n.

3.2 Theoretical Analysis

In this section we present the bound for the distance between the sub-optimal
solution by Aℓ0-SSC and the global optimal solution to the objective problem

(8). We first prove that the sequence {αi(t)}t produced by PGD has shrinking

support and the objective sequence {L(αi(t))}t is decreasing so that it always
converges in Lemma 1. Under certain assumptions on the sparse eigenvalues of
the data X, we show that the sub-optimal solution by Aℓ0-SSC is actually a

critical point, namely {αi(t)}t converges to a critical point of the objective (8),
and this sub-optimal solution and the global optimal solution to (8) are local
solutions of a carefully designed capped-ℓ1 regularized problem. Based on the
established theory in [28] showing the distance between different local solution-
s to various sparse estimation problems including the capped-ℓ1 problem, the
bound for ℓ2-distance between the sub-optimal solution and the global optimal
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solution is presented in Theorem 3, again under the assumption on the sparse
eigenvalues of X. Note that our analysis is valid for all 1 ≤ i ≤ n.

In the following analysis, we let βI denote the vector formed by the elements
of β with indices in I when β is a vector, or matrix formed by columns of β with

indices in I when β is a matrix. Also, we let Si = supp(αi(0)) and |Si| = Ai for
1 ≤ i ≤ n.

Lemma 1 (Support shrinkage in the proximal iterations and sufficient decrease

of the objective) When s > max{2Ai,
2(1+λAi)

λτ }, then the sequence {αi(t)}t gen-
erated by PGD with (9) and (11) satisfies

supp(αi(t)) ⊆ supp(αi(t−1)
), t ≥ 1 (12)

namely the support of the sequence {αi(t)}t shrinks when the iteration proceeds.

Moreover, the sequence of the objective {L(αi(t))}t decreases, and the following
inequality holds for t ≥ 1:

L(αi(t)) ≤ L(αi(t−1)
)− (τ − 1)s

2
∥αi(t) −αi(t−1)∥22 (13)

And it follows that the sequence {L(αi(t))}t converges. The above results hold
for any 1 ≤ i ≤ n.

Before stating Lemma 2, the following definitions are introduced which are
essential for our analysis.

Definition 1 (Critical points) Given the non-convex function f : IRn → R ∪
{+∞} which is a proper and lower semi-continuous function.

– for a given x ∈ domf , its Frechet subdifferential of f at x, denoted by ∂̃f(x),
is the set of all vectors u ∈ IRn which satisfy

lim sup
y ̸=x,y→x

f(y)− f(x)− ⟨u,y − x⟩
∥y − x∥ ≥ 0

– The limiting-subdifferential of f at x ∈ IRn, denoted by written ∂f(x), is
defined by

∂f(x) = {u ∈ IRn : ∃xk → x, f(xk) → f(x), ũk ∈ ∂̃f(xk) → u}

The point x is a critical point of f if 0 ∈ ∂f(x).

Also, we are considering the following capped-ℓ1 regularized problem, which
replaces the noncontinuous ℓ0-norm with the continuous capped-ℓ1 regularization
term R:

min
β∈IRn,βi=0

Lcapped−ℓ1(β) = ∥xi −Xβ∥22 +R(β; b) (14)

where R(β; b) =
n∑

j=1

R(βj ; b), R(t; b) = λmin{|t|,b}
b for some b > 0. It can be seen

that R(t; b) approaches the ℓ0-norm when b → 0+.
Now we define the local solution of problem (14).
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Definition 2 (Local solution) A vector β̃ is a local solution to the problem (14)
if

∥2X⊤(Xβ̃ − xi) + Ṙ(β̃; b)∥2 = 0 (15)

where Ṙ(β̃; b) = [Ṙ(β̃1; b), Ṙ(β̃2; b), . . . , Ṙ(β̃n; b)]
⊤.

Note that in the above definition and the following text, Ṙ(t; b) can be cho-
sen as any value between the right differential ∂R

∂t (t+; b) (or Ṙ(t+; b)) and left

differential ∂R
∂t (t−; b) (or Ṙ(t−; b)).

Definition 3 (Sparse eigenvalues) The lower and upper sparse eigenvalues of a
matrix A are defined as

κ−(m) := min
∥u∥0≤m;∥u∥2=1

∥Au∥22 κ+(m) := max
∥u∥0≤m,∥u∥2=1

∥Au∥22

It is worthwhile mentioning that the sparse eigenvalues are closely related to
the Restricted Isometry Property (RIP) [29] used frequently in the compressive
sensing literature. Typical RIP requires bounds such as δτ + δ2τ + δ3τ < 1 or
δ2τ <

√
2 − 1 [30] for stably recovering the signal from measurements and τ is

the sparsity of the signal, where δτ = max{κ+(τ)−1, 1−κ−(τ)}. Similar to [28],
we use more general conditions on the sparse eigenvalues in this paper (in the
sense of not requiring bounds in terms of δ) to obtain theoretical results. In the
following text, sparse eigenvalues κ− and κ+ are for the data matrix X.

Definition 4 (Degree of Nonconvexity of a Regularizer) For κ ≥ 0 and t ∈ IR,
define

θ(t, κ) := sup
s
{−sgn(s− t)(Ṗ (s; b)− Ṗ (t; b))− κ|s− t|}

as the degree of nonconvexity for function P . If u = (u1, . . . , un)
⊤ ∈ IRn,

θ(u, κ) = [θ(u1, κ), . . . , θ(un, κ)].

Note that θ(t, κ) = 0 for convex function P .

In the following lemma, we show that the sequences {αi(t)}t generated by
Aℓ0-SSC converges to a critical point of L(αi), denoted by α̂i, under certain
assumption on the sparse eigenvalues of X. Therefore, the sub-optimal solution
by Aℓ0-SSC is a critical point of L(αi) in this case. Denote by αi∗ the global op-

timal solution to the ℓ0-SSC problem(8), and let Ŝi = supp(α̂i), S∗
i = supp(α̂∗).

The following lemma also shows that both α̂i and αi∗ are local solutions to the
capped-ℓ1 regularized problem (14).

Lemma 2 For any 1 ≤ i ≤ n, suppose κ−(Ai) > 0, then the sequences {αi(t)}t
generated by PGD with (9) and (11) converges to a critical point of L(αi), which
is denoted by α̂i. Moreover, if

0 < b < min{min
j∈Ŝi

|α̂i
j |,

λ

maxj /∈Ŝi
| ∂Q

∂αi
j
|αi=α̂i |

, min
j∈S∗

i

|αi
j
∗|, λ

maxj /∈S∗
i
| ∂Q

∂αi
j
|αi=αi∗ |

} (16)

(if the denominator is 0, λ
0 is defined to be +∞ in the above inequality), then

both α̂i and αi∗ are local solutions to the capped-ℓ1 regularized problem (14).
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Theorem 5 in [28] gives the estimation on the distance between two local solutions
of the capped-ℓ1 regularized problem. Based on this result, we have the following
theorem showing that under assumptions on the sparse eigenvalues of X, the
sub-optimal solution α̂i obtained by Aℓ0-SSC has bounded ℓ2-distance to αi∗,
the global optimal solution to the original ℓ0 problem (8).

Theorem 3 (Sub-optimal solution is close to the global optimal solution) For

any 1 ≤ i ≤ n, suppose κ−(Ai) > 0 and κ−(|Ŝi ∪ S∗
i |) > κ > 0, and b is chosen

according to (16) as in Lemma 2. Then

∥X(α̂i −αi∗)∥22 ≤ 2κ−(|Ŝi ∪ S∗
i |)

(κ−(|Ŝi ∪ S∗
i |)− κ)2

(17)

( ∑
j∈Ŝi

(max{0, λ
b
− κ|α̂i

j − b|})2 + |S∗
i \ Ŝi|(max{0, λ

b
− κb})2

)
In addition,

∥(α̂i −αi∗)∥22 ≤ 2

(κ−(|Ŝi ∪ S∗
i |)− κ)2

(18)

( ∑
j∈Ŝi

(max{0, λ
b
− κ|α̂i

j − b|})2 + |S∗
i \ Ŝi|(max{0, λ

b
− κb})2

)
Remark 1 This result follows from Lemma 2 and Theorem 5 in [28]. The prop-

erty of support shrinkage in Lemma 1 guarantees that Ŝi ⊆ Si, indicating that
sub-optimal solution α̂i is sparse, so we can expect that |Ŝi ∪ S∗

i | is reasonably
small. Also note that the bound for distance between the sub-optimal solution and
the global optimal solution presented in Theorem 3 does not require typical RIP
conditions. Also, when λ

b − κ|α̂i
j − b| for nonzero α̂i

j and λ
b − κb are no greater

than 0, or they are small positive numbers, the sub-optimal solution α̂i is equal
to or very close to the global optimal solution.

The detailed proofs of the theorems and lemmas in this paper are included in the
supplementary document. The theoretical results in this section are mainly de-
rived from the optimization perspective. Due to limited space, we present an ad-
ditional theorem in the supplementary which applies the bound (18) to show how
accurate the sub-optimal solution α̂i is from the perspective of subspace-sparse
representation, connecting Aℓ0-SSC to the correctness of subspace clustering.

Table 2. Clustering Results on UCI Ionosphere and Heart

Data Set Measure KM SC SSC SMCE SSC-OMP Aℓ0-SSC

Ionosphere
AC 0.7097 0.7350 0.5128 0.6809 0.6353 0.7692
NMI 0.1287 0.2155 0.1165 0.0871 0.0299 0.2609

Heart
AC 0.5889 0.6037 0.6370 0.5963 0.5519 0.6444
NMI 0.0182 0.0269 0.0529 0.0255 0.0058 0.0590
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Table 3. Clustering Results on COIL-20 and COIL-100 Database. c in the left column
is the cluster number, i.e. the first c clusters of the entire data are used for clustering.
c has the same meaning in Table 4.

COIL-20
# Clusters

Measure KM SC SSC SMCE SSC-OMP Aℓ0-SSC

c = 4
AC 0.6632 0.6701 1.0000 0.7639 0.9271 1.0000
NMI 0.5106 0.5455 1.0000 0.6741 0.8397 1.0000

c = 8
AC 0.5130 0.4462 0.7986 0.5365 0.6753 0.9705
NMI 0.5354 0.4947 0.8950 0.6786 0.7656 0.9638

c = 12
AC 0.5885 0.4965 0.7697 0.6806 0.5475 0.8310
NMI 0.6707 0.6096 0.8960 0.8066 0.6316 0.9149

c = 16
AC 0.6579 0.4271 0.8273 0.7622 0.3481 0.9002
NMI 0.7555 0.6031 0.9301 0.8730 0.4520 0.9552

c = 20
AC 0.6554 0.4278 0.7854 0.7549 0.3389 0.8472
NMI 0.7630 0.6217 0.9148 0.8754 0.4853 0.9428

COIL-100
# Clusters

Measure KM SC SSC SMCE SSC-OMP Aℓ0-SSC

c = 20
AC 0.5850 0.4514 0.5757 0.6208 0.4243 0.9264
NMI 0.7456 0.6700 0.7980 0.7993 0.5258 0.9681

c = 40
AC 0.5791 0.4139 0.5934 0.6038 0.2340 0.8472
NMI 0.7691 0.6681 0.7962 0.7918 0.4378 0.9471

c = 60
AC 0.5371 0.3389 0.5657 0.5887 0.1905 0.8326
NMI 0.7622 0.6343 0.8162 0.7973 0.3690 0.9352

c = 80
AC 0.5048 0.3115 0.5271 0.5835 0.2247 0.7899
NMI 0.7474 0.6088 0.8006 0.8006 0.4173 0.9218

c = 100
AC 0.4996 0.2835 0.5275 0.5639 0.1667 0.7683
NMI 0.7539 0.5923 0.8041 0.8064 0.3757 0.9182

Table 4. Clustering Results on the Extended Yale Face Database B.

Yale-B
# Clusters

Measure KM SC SSC SMCE SSC-OMP Aℓ0-SSC

c = 10
AC 0.1782 0.1922 0.7580 0.3672 0.7375 0.8406
NMI 0.0897 0.1310 0.7380 0.3266 0.7468 0.7695

c = 15
AC 0.1554 0.1706 0.7620 0.3761 0.7532 0.7987
NMI 0.1083 0.1390 0.7590 0.3593 0.7943 0.8183

c = 20
AC 0.1200 0.1466 0.7930 0.3526 0.7813 0.8273
NMI 0.0872 0.1183 0.7860 0.3771 0.8172 0.8429

c = 30
AC 0.1096 0.1209 0.8210 0.3470 0.7156 0.8633
NMI 0.1159 0.1338 0.8030 0.3927 0.7260 0.8762

c = 38
AC 0.0954 0.1077 0.7850 0.3293 0.6529 0.8480
NMI 0.1258 0.1485 0.7760 0.3812 0.7024 0.8612

4 Experimental Results

The superior clustering performance of Aℓ0-SSC is demonstrated in this sec-
tion with extensive experimental results. Two measures are used to evaluate the
performance of the clustering methods, i.e. the Accuracy (AC) and the Normal-
ized Mutual Information(NMI) [31]. We compare our Aℓ0-SSC to K-means (K-
M), Spectral Clustering (SC), SSC, Sparse Manifold Clustering and Embedding
(SMCE) [12]. Aℓ0-SSC is also compared to SSC-OMP to show the advantage of
the proposed PGD in the previous sections. By adjusting the parameters, SSC
and ℓ1-graph solve almost the same problem and generate equivalent results, so
we report their performance under the same name SSC.
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Table 5. Clustering Results on UMIST Face, CMU PIE, AR Face, CMU Multi-PIE
and Georgia Tech Face database. Note that the CMU Multi-PIE contains the facial
images captured in four sessions (S1 to S4).

Data Measure KM SC SSC SMCE SSC-OMP Aℓ0-SSC

UMIST Face
AC 0.4275 0.4052 0.4904 0.4487 0.4835 0.6730
NMI 0.6426 0.6159 0.6885 0.6696 0.6310 0.7924

CMU PIE
AC 0.0845 0.0729 0.2287 0.1733 0.0821 0.2591
NMI 0.1884 0.1789 0.3659 0.3343 0.1494 0.4435

AR Face
AC 0.2752 0.2957 0.5914 0.3543 0.4229 0.6086
NMI 0.5941 0.6248 0.8060 0.6573 0.6835 0.8117

MPIE S1
AC 0.1164 0.1285 0.5892 0.1721 0.1695 0.6741
NMI 0.5049 0.5292 0.7653 0.5514 0.3395 0.8622

MPIE S2
AC 0.1315 0.1410 0.6994 0.1898 0.2093 0.7527
NMI 0.4834 0.5128 0.8149 0.5293 0.4292 0.8939

MPIE S3
AC 0.1291 0.1459 0.6316 0.1856 0.1787 0.7050
NMI 0.4811 0.5185 0.7858 0.5155 0.3415 0.8750

MPIE S4
AC 0.1308 0.1463 0.6803 0.1823 0.1680 0.7246
NMI 0.4866 0.5280 0.8063 0.5294 0.3345 0.8837

Georgia Face
AC 0.4987 0.5187 0.5413 0.6053 0.4733 0.6187
NMI 0.6856 0.7014 0.6968 0.7394 0.6622 0.7400
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Fig. 1. Clustering performance with different values of λ, i.e. the weight for the ℓ0-
norm, on the Extended Yale Face Database B. Left: Accuracy; Right: NMI. Note that
the performance of SSC does not vary with λ since its weighting parameter for the
ℓ1-norm is chosen from [0.1, 1] for the best performance.

4.1 Clustering on UCI Data

In this subsection, we conduct experiments on the Ionosphere and Heart data
from UCI machine learning repository [32], revealing the performance of Aℓ0-
SSC on general machine learning data. The Ionosphere data contains 351 points
of dimensionality 34. The Heart data contains 270 points of dimensionality 13.
The clustering results on the two data sets are shown in Table 2.

4.2 Clustering On COIL-20 and COIL-100 Database

COIL-20 Database has 1440 images of 20 objects in which the background has
been removed, and the size of each image is 32×32, so the dimension of this data
is 1024. COIL-100 Database contains 100 objects with 72 images of size 32× 32
for each object. The images of each object were taken 5 degrees apart when the
object was rotated on a turntable. The clustering results on these two data sets
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are shown in Table 3. We observe that Aℓ0-SSC performs consistently better than
all other competing methods. On COIL-100 Database, SMCE renders slightly
better results than SSC on the entire data due to its capability of modeling
non-linear manifolds.

4.3 Clustering On Extended Yale Face Database B and More Face
Data Sets

The Extended Yale Face Database B contains face images for 38 subjects with
64 frontal face images taken under different illuminations for each subject. The
clustering results are shown in Table 4. We can see that Aℓ0-SSC achieves sig-
nificantly better clustering result than SSC, which is the second best method
on this data. We demonstrate more experimental results on UMIST Face, CMU
PIE, AR Face, CMU Multi-PIE and Georgia Tech Face Database in Table 5, and
the used data sets are introduced at http://www.face-rec.org/databases/.

4.4 Parameter Setting

λ is usually set to 0.5 for Aℓ0-SSC, with the maximum iteration numberM = 100
and the stopping threshold ε = 10−6. We observe that the average number of
non-zero elements of the sparse code generated by Aℓ0-SSC is around 3 for most
data sets. In SSC-OMP, ∥αi∥0 is tuned to control the sparsity of the generated
sparse codes such that the aforementioned average number of non-zero elements
of the sparse code matches that of Aℓ0-SSC. For SSC, the weighting parameter
for the ℓ1-norm has the default value of 0.1. For all the methods that use spectral
clustering to obtain the clustering results, K-meas are performed multiple times
and the data partition with minimum distortion is taken as the final result.

We investigate how the clustering performance on the Extended Yale Face
Database B changes by varying the weighting parameter λ for Aℓ0-SSC, and
illustrate the result in Figure 1. The parameter sensitivity result on COIL-20
Database is presented in the supplementary document. We observe that the
performance of Aℓ0-SSC is much better than other algorithms over a relatively
large range of λ, revealing the robustness of our algorithm with respect to the
weighting parameter λ.

5 Conclusion

We propose a novel Aℓ0-SSC for data clustering under the principle of ℓ0-induced
sparse subspace clustering (ℓ0-SSC). Compared to the existing sparse subspace
clustering methods, ℓ0-SSC features ℓ0-induced almost surely subspace-sparse
representation under milder assumptions on the subspaces and random data
generation. Aℓ0-SSC uses proximal gradient descent to solve the optimization
problem of ℓ0-SSC and obtain a sub-optimal solution with theoretical guaran-
tee. Extensive experimental results on various real data sets demonstrate the
effectiveness and superiority of Aℓ0-SSC over other competing methods.
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