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1 Proof of Theorems

1.1 Proof of Theorem 1

The ℓ0-induced sparse subspace clustering solves the following problem:

min
α

∥α∥0 s.t. X = Xα, diag(α) = 0 (1)

Theorem 1 (ℓ0-Induced Almost Surely Subspace-Sparse Representation) Sup-
pose the data X = [x1, . . . ,xn] ∈ IRd×n lie in a union of K distinct subspaces
{Sk}Kk=1 of dimensions {dk}Kk=1, i.e. Sk ̸= Sk′ for k ̸= k′. Let X(k) ∈ IRd×nk

denote the data that belong to subspace Sk, and
K∑

k=1

nk = n. When nk ≥ dk+1, if

the data belonging to each subspace are generated i.i.d. from arbitrary unknown
continuous distribution supported on that subspace,1 then with probability 1, the
optimal solution to (1), denoted by α∗, is a subspace-sparse representation, i.e.
nonzero elements in α∗i corresponds to the data that lie in the same subspace
as xi.

To prove Theorem 1, we need the claims below, which show that the prob-
ability that a point lies in a low dimensional subspace in any subspace Sk for
k = 1 . . .K is 0, and any L ≤ dk points in X(k) are most surely linearly inde-
pendent, under the assumptions of Theorem 1.

Claim 1 Under the assumptions of Theorem 1, for a random data point x ∈ Sk

that is generated according to a continuous distribution supported on Sk, the
probability that x lies in a hyperplane H in Sk which has dimension less than dk
is zero, i.e. Pr[x ∈ H] = 0 for subspace H ⊂ Sk and Dim[H] < dk.

Claim 2 Under the assumptions of Theorem 1, with probability 1, any L ≤ dk
points in the data X(k) ∈ IRd×nk that lie in Sk are linearly independent.
1

Continuous distribution here indicates that the data distribution is non-degenerate in the sense
that the probability measure of any hyperplane of dimension less than that of the subspace is 0.
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Proof. For any set {xjℓ}Lℓ=1 ⊆ X(k) that are linearly dependent, let HA be the
subspace spanned by point set A. Then at least one point in {xjℓ}Lℓ=1 ⊆ X(k)

can be linearly represented by the others, and

Pr[{xjℓ}Lℓ=1 : {xjℓ}Lℓ=1 are linearly dependent]

≤
L∑

ℓ′=1

Pr[xj
ℓ
′ ∈ H

{x−ℓ
′

jℓ
}
] = 0 (2)

where {x−ℓ
′

jℓ
} indicates all the elements of {xjℓ}Lℓ=1 except xj

ℓ
′ . Since Dim[H

{x(−ℓ
′
)

jℓ
}
] <

L ≤ dk, Pr[xj
ℓ
′ ∈ H

{x−ℓ
′

jℓ
}
] = 0 for each 1 ≤ ℓ

′ ≤ L.

Proof. According to Claim 2, for any fixed 1 ≤ k ≤ K, any L ≤ dk points in the
data X(k) ∈ IRd×nk are almost surely linearly independent. Therefore, at least
dk points in X(k) are required to linearly represent any point xi in Sk. Let α

i∗

be the optimal solution to the following ℓ0 problem

min
αi

∥αi∥0 s.t. xi = [X(k) \ xi X(−k)]αi, αii = 0 (3)

where X(−k) denotes the data that lie in all subspaces except Sk. Let αi∗ =[
β∗

β−1∗

]
where β∗ and β−1∗ are sparse codes corresponding to X(k) \ xi and

X(−k) respectively. Suppose β−1∗ ̸= 0, then xi belongs to a subspace S
′
spanned

by the data points corresponding to nonzero elements of αi∗, and S ′ ̸= Sk,
Dim[S ′

] ≤ dk. To see this, if S ′
= Sk, then the data corresponding to nonzero

elements of β−1∗ belong to Sk, which is contrary to the definition of X(−k).
Also, if Dim[S ′

] > dk, then a sparser solution can be obtained within X(k), i.e.
one can find dk points in Sk to represent xi almost surely.

Let S ′′
= S ′ ∩ Sk, then Dim[S ′′

] ≤ dk. S
′′
is “inter-subspace hyperplane”

since it intersects with at least two subspaces. We now derive the following results
according to dimension of S ′′

:

– Dim[S ′′
] < dk. For each configuration of the generated data

{x1, . . . ,xi−1,xi+1, . . . ,xn},

S ′′
is the intersection of Sk and S ′

. A configuration of the data is a specific
set of data points generated from the corresponding distributions. S ′

can
only be spanned from a subset of these data points, so there are only finite
possible choices for S ′

regardless of xi, and there are also finite possible
choices for the hyperplane S ′′

. According to Claim 1, the probability of the
event that xi lies in the hyperplane S ′′

is zero, i.e. Pr[xi ∈ S ′′ |{xj}j ̸=i] = 0.
Now we compute the integral of this probability over the the domain of
{x1, . . . ,xi−1,xi+1, . . . ,xn} (their corresponding subspaces) with respect to
their corresponding probabilistic measures, we conclude that the probability
that xi ∈ S ′′

is zero, i.e.

Pr[xi ∈ S
′′
] =

∫
×n

t=1S
(t)

1Ixi∈S′′⊗n
t=1dµ

(t)
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=

∫
×t̸=iS(t)

Pr[xi ∈ S
′′
|{xt}t̸=i] ⊗t̸=idµ

(t) = 0

where S(t) is the subspace that xt lies in, and µ(t) is the probabilistic measure
of the distribution in S(t).

– Dim[S ′′
] = dk. In this case, S ′′

= S ′
= Sk, which indicates that the data

points corresponding to nonzero elements of β−1∗ belong to Sk, contradicting
with the definition of X(−k).

Therefore, with probability 1, β−1∗ = 0, and the conclusion of Theorem 1
holds.

1.2 Discussion of the Assumptions on the Subspaces

The only assumption on the subspaces in Theorem 1 is that all subspaces are
distinct, which is the mildest assumption on the underlying subspaces compared
to most existing sparse subspace clustering methods. Note that the difference
between assumption S3, i.e. overlapping subspaces and assumption S4 in Table
1 of the paper , i.e. distinct subspaces, is that distinctness of subspaces allows
the case that one small subspace Sk is contained in another big subspace Sk′ . ℓ0-
SSC can even produce subspace-spare representation for the points in the small
subspace, i.e. the nonzero elements of the optimal solution to the ℓ0 problem
(26) for any point xi ∈ Sk only correspond to data in subspace Sk. One can
intuitively obtain this result by noting that Dim[Sk] = dk < Dim[Sk′ ] = dk′ ,
otherwise Sk = Sk′ and it contradicts with the assumption that Sk ̸= Sk′ . Also,
dk points in Sk other than xi can linearly represent xi almost surely, which forms
the most sparse representation of xi and constitutes the solution to the problem
(26). In contrast, with probability 1, at least dk′ > dk points from Xk′

other
than xi are needed to linearly represent xi (note that the probability that a point
from Xk′

lies in a low dimensional subspace Sk is zero). Figure 1 illustrates the
example that a two dimensional subspace S1 is contained in a three dimensional
subspace S2. Two points x2 and x3 in S1 can linearly represent x1 ∈ S1, while
at least three points in S2 are required to linear represent x1 with probability 1
almost surely. Although it is possible that two points in S2 can linear represent
x1, the probability that this event happens is 0.

1.3 Proof of Theorem 2

Theorem 2 (There is “no free lunch” for obtaining subspace representation
under the general conditions of Theorem 1) Under the assumptions of Theorem 1,
if there is an algorithm which, for any data point xi ∈ Sk, 1 ≤ i ≤ n, 1 ≤ k ≤ K,
can find the data from the same subspace as xi that linearly represent xi, i.e.

xi = Xβ (βi = 0) (4)

where nonzero elements of β correspond to the data that lie in the subspace Sk.
Then, with probability 1, solution to the ℓ0 problem (26) can be obtained from β
in O(n̂3) time, where n̂ is the number of nonzero elements in β.
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Fig. 1. A two dimensional subspace S1 (a plane) is contained in a three dimensional
subspace S2. x1 lies in S1, two points x2 and x3 in S1 can linearly represent x1. With
probability 1, at least three points in S2, e.g. x4,x5,x6, are required to linear represent
x1. Note that it is possible that two points x5 and x7 ∈ S2 can linear represent x1, but
it happens only if x1 lies in the red line which is the intersection of the plane S1 and
the plane spanned by x5 and x7, and the probability of such event is 0.

Proof. Let X̂ be the data corresponding to the nonzero elements of β. By Gaus-
sian elimination, the maximal linearly independent columns of X̂, denoted by
X̃, can be obtained in O(n̂3) time where n̂ is the number of columns of X̂.
Then, xi can be linearly represented by X̃ and suppose xi = Xβ̃ where nonzero
elements of β̃ correspond to columns of X̃. Then we will prove that β̃ is the
solution to the the ℓ0 problem (26) with probability 1. To see this, suppose β̃ is
not the sparest solution to (26), and denote by β∗ the optimal solution to (26).
Then xi = Xβ∗ and ∥β∗∥0 < ∥β̃∥0.

Since xi lies in subspace Sk, d
∗ , ∥β∗∥0 < ∥β̃∥0 ≤ dk with probability 1.

Let X∗ = {xjm}d∗

m=1 be the d∗ data points corresponding to nonzero elements
of β∗. Then X∗ must be linearly independent, otherwise a sparser solution to
(26) can be obtained by searching for the maximal linearly independent subset
of X∗. Denote by S∗ the subspace spanned by X∗ with Dim[S∗] = d∗, and
S ′

= S∗∩Sk. It follows that S
′
is a subspace contained in Sk with dimensionality

Dim[S ′
] ≤ Dim[S∗] < dk. Using the argument similar to that used in the proof

of Theorem 1, the probability that xi ∈ S ′
is zero since S ′

is a low dimensional
subspace in Sk and the data are distributed according to continuous distributions
supported on the corresponding subspaces.

1.4 Proof of Lemma 1

Before proving Lemma 1, we review the proximal gradient descent (PGD) method

used in Aℓ0-SSC, which obtains αi(t) from αi(t−1)
for t ≥ 1 by the following two

steps:
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α̃i
(t)

= αi(t−1) − 2

τs
(X⊤Xαi(t−1) −X⊤xi) (5)

αi
j
(t)

=

 0 : |α̃i
j

(t)
| <

√
2λ
τs

or i = j

α̃i
j

(t)
: otherwise

(6)

In the following text, we let σmax(·) and σmin(·) indicate the largest and
smallest eigenvalue of a matrix in magnitude.

Lemma 1 (Support Shrinkage in the Proximal Iterations and Sufficient De-

crease of the Objective) When s > max{2Ai,
2(1+λAi)

λτ }, then the sequence {αi(t)}t
generated by PGD with (5) and (6) satisfies

supp(αi(t)) ⊆ supp(αi(t−1)
), t ≥ 1 (7)

namely the support of the sequence {αi(t)}t shrinks when the iteration proceeds.

Moreover, the sequence of the objective {L(αi(t))}t decreases, and the following
inequality holds for t ≥ 1:

L(αi(t)) ≤ L(αi(t−1)
)− (τ − 1)s

2
∥αi(t) −αi(t−1)∥22 (8)

And it follows that the sequence {L(αi(t))}t converges. The above results hold
for any 1 ≤ i ≤ n.

Proof. We prove this Lemma by mathematical induction.

When t = 1, we first show that supp(αi(1)) ⊆ supp(αi(0)), i.e. the support of

αi shrinks after the first iteration. To see this, α̃i
(t)

= αi(t−1)− 2
τs (X

⊤Xαi(t−1)−
X⊤xi). Since α

i(t−1)
= argminαi∈IRn,αi

i=0 ∥xi −Xαi∥22 + λ∥α∥1 is the optimal

solution to the ℓ1-graph problem, and the data are normalized to have unit ℓ2-
norm,

∥xi −Xαi(t−1)∥22 + λ∥αi(t−1)∥1 ≤ ∥xi∥22 = 1

which indicates that ∥xi −Xαi(t−1)∥22 ≤ 1. Let g(t−1) = − 2
τs (X

⊤Xαi(t−1) −
X⊤xi), then

|α̃i
j

(t)
| ≤ ∥g(t−1)∥∞ ≤ 2

τs
∥X⊤(Xαi(t−1) − xi)∥∞ ≤ 2

τs

where j is the index for any zero element ofαi(t−1)
, 1 ≤ j ≤ n, j /∈ supp(αi(t−1)

).

Now |α̃i
j

(t)
| <

√
2λ
τs , and it follows that αi

j
(t)

= 0 due to the update rule in

(6). Therefore, the zero elements of αi(t−1)
remain unchanged in αi(t), and

supp(αi(t)) ⊆ supp(αi(t−1)
) for t = 1.
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Let QSi(y) = ∥xi −XSiy∥22 for y ∈ IRAi , then we show that s > 2Ai is the
Lipschitz constant for the gradient of function QSi . To see this, we have

σmax(X
⊤
Si
XSi) =

(
σmax(XSi)

)2 ≤ Tr(X⊤
Si
XSi) = Ai

Also, ∇QSi(y) = 2(X⊤
Si
XSiy −X⊤

Si
xi), and

∥∇QSi(y)−∇QSi(z)∥2 = 2∥X⊤
Si
XSi(y − z)∥2 (9)

≤ 2σmax(X
⊤
Si
XSi) · ∥(y − z)∥2

≤ 2Ai∥(y − z)∥2 < s∥(y − z)∥2

Note that when t = 1, since

αi(t) = argmin
v∈IRn,vi=0

τs

2
∥v − α̃i

(t)
∥22 + λ∥v∥0

we have

τs

2
∥αi(t) − α̃i

(t)
∥22 + λ∥αi(t)∥0 (10)

≤ τs

2
∥∇Q(αi(t−1)

)

τs
∥22 + λ∥αi(t−1)∥0

which is equivalent to

⟨∇QSi(α
i
Si

(t−1)
),αi

Si

(t) −αi
Si

(t−1)⟩+ τs

2
∥αi(t) −αi(t−1)∥22 (11)

+ λ∥αi(t)∥0 ≤ λ∥α(t−1)∥0

due to the fact that

⟨∇Q(αi(t−1)
),αi(t) −αi(t−1)⟩ = ⟨∇QSi(α

i
Si

(t−1)
),αi

Si

(t) −αi
Si

(t−1)⟩

Also, since s is the Lipschitz constant for ∇QSi ,

QSi(α
i
Si

(t)
) ≤ QSi(α

i
Si

(t−1)
) + ⟨∇QSi(α

i
Si

(t−1)
),αi

Si

(t) −αi
Si

(t−1)⟩ (12)

+
s

2
∥αi

Si

(t) −αi
Si

(t−1)∥22

Combining (11) and (12) and note that ∥αi
Si

(t)−αi
Si

(t−1)∥2 = ∥αi(t)−αi(t−1)∥2,
QSi(α

i
Si

(t)
) = Q(αi(t)) and QSi(α

i
Si

(t−1)
) = Q(αi(t−1)

), we have

Q(αi(t)) + λ∥αi(t)∥0 ≤ Q(αi(t−1)
) + λ∥αi(t−1)∥0 (13)

− (τ − 1)s

2
∥αi(t) −αi(t−1)∥22

Now (7) and (8) are verified for t = 1. Suppose (7) and (8) hold for all t ≥ t0

with t0 ≥ 1. Since {L(αi(t))}t0t=1 is decreasing, we have

L(αi(t0)) = ∥xi −Xαi(t0)∥22 + λ∥αi(t0)∥0
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≤ ∥xi −Xαi(0)∥22 + λ∥αi(0)∥0 ≤ 1 + λAi

which indicates that ∥xi −Xαi(t0)∥2 ≤
√
1 + λAi. When t = t0 + 1,

|α̃i
j

(t)
| ≤ ∥g(t−1)∥∞ ≤ 2

τs
∥X⊤(Xαi(t−1) − xi)∥∞

≤ 2

τs

√
1 + λAi

where j is the index for any zero element ofαi(t−1)
, 1 ≤ j ≤ n, j /∈ supp(αi(t−1)

).

Now |α̃i
j

(t)
| <

√
2λ
τs , and it follows that and αi

j
(t)

= 0 due to the update rule

in (6). Therefore, the zero elements of αi(t−1)
remain unchanged in αi

j
(t)
, and

supp(αi(t)) ⊆ supp(αi(t−1)
) ⊆ Si for t = t0 + 1. Moreover, similar to the case

when t = 1, we can derive (11), (12) and (13), so that the support shrinkage (7)
and decline of the objective (8) are verified for t = t0 + 1. It follows that the
claim of this lemma holds for all t ≥ 1.

Since the sequence {L(αi(t))}t is deceasing with lower bound 0, it must
converge.

In Lemma 2, we show that the sequence {αi(t)}t converges to a critical point
of L(αi). And we define the critical point for nonconvex function as below.

Definition 1 (Critical points) Given the non-convex function f : IRn → R ∪
{+∞} which is a proper and lower semi-continuous function.

– for a given x ∈ domf , its Frechet subdifferential of f at x, denoted by ∂̃f(x),
is the set of all vectors u ∈ IRn which satisfy

lim sup
y ̸=x,y→x

f(y)− f(x)− ⟨u,y − x⟩
∥y − x∥ ≥ 0

– The limiting-subdifferential of f at x ∈ IRn, denoted by written ∂f(x), is
defined by

∂f(x) = {u ∈ IRn : ∃xk → x, f(xk) → f(x), ũk ∈ ∂̃f(xk) → u}

The point x is a critical point of f if 0 ∈ ∂f(x).

Also, we are considering the following capped-ℓ1 regularized problem in this
paper:

min
β∈IRn,βi=0

Lcapped−ℓ1(β) = ∥xi −Xβ∥22 +R(β; b) (14)

where R(β; b) =
n∑

j=1

R(βj ; b), R(t; b) = λmin{|t|,b}
b for some b > 0. It can be seen

that R(t; b) approaches the ℓ0 term when b → 0+.
The local solution of the problem (14) is defined as
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Definition 2 (Local solution) A vector β̃ is a local solution to the problem (14)
if

∥2X⊤(Xβ̃ − xi) + Ṙ(β̃; b)∥2 = 0 (15)

where Ṙ(β̃; b) = [Ṙ(β̃1; b), Ṙ(β̃2; b), . . . , Ṙ(β̃n; b)]
⊤.

Note that in the above definition and the following text, Ṙ(t; b) can be cho-
sen as any value between the right differential ∂R

∂t (t+; b) (or Ṙ(t+; b)) and left

differential ∂R
∂t (t−; b) (or Ṙ(t−; b)).

Before presenting our theorem on the property of the solution obtained by
the proposed PGD, we define the sparse eigenvalues of a matrix below.

Definition 3 (Sparse eigenvalues) The lower and upper sparse eigenvalues of a
matrix A is defined as

κ−(m) := min
∥u∥0≤m;∥u∥2=1

∥Au∥22

κ+(m) := max
∥u∥0≤m,∥u∥2=1

∥Au∥22

Definition 4 (Degree of Nonconvexity of a Regularizer) For κ ≥ 0 and t ∈ IR,
define

θ(t, κ) := sup
s
{−sgn(s− t)(Ṗ (s; b)− Ṗ (t; b))− κ|s− t|}

as the degree of nonconvexity for function P . If u = (u1, . . . , un)
⊤ ∈ IRn,

θ(u, κ) = [θ(u1, κ), . . . , θ(un, κ)].

Note that θ(t, κ) = 0 for convex function P .

1.5 Proof of Lemma 2

In the following lemma, we show that the sequences {αi(t)}t generated by PGD

with (5) and (6) converges to a critical point of L(αi), which is denoted by α̂i.

And we denote by αi∗ the global optimal solution to the ℓ0-SSC problem for
point xi:

min
αi∈IRn,αi

i=0
L(αi) = ∥xi −Xαi∥22 + λ∥αi∥0 (16)

Let Ŝi = supp(α̂i), S∗
i = supp(α̂i), then the following lemma also shows that

both α̂i and αi∗ are local solutions to the capped-ℓ1 regularized problem (14).

Lemma 2 For any 1 ≤ i ≤ n, suppose κ−(Ai) > 0, then the sequences {αi(t)}t
generated by PGD with (5) and (6) converges to a critical point of L(αi), which
is denoted by α̂i. Moreover, if

0 < b < min{min
j∈Ŝi

|α̂i
j |,

λ

maxj /∈Ŝi
| ∂Q

∂αi
j
|αi=α̂i |

, min
j∈S∗

i

|αi
j
∗|, λ

maxj /∈S∗
i
| ∂Q

∂αi
j
|αi=αi∗ |

} (17)

(if the denominator is 0, λ
0 is defined to be +∞ in the above inequality), then

both α̂i and αi∗ are local solutions to the capped-ℓ1 regularized problem (14).
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Proof. We first prove that the sequences {αi(t)}t is bounded for any 1 ≤ i ≤ n.
In the proof of Lemma 1, it is proved that

L(αi(t)) = ∥xi −Xαi(t)∥22 + λ∥αi(t)∥0

≤ ∥xi −Xαi(0)∥22 + λ∥αi(0)∥0 ≤ 1 + λAi

for t ≥ 1. Therefore, ∥xi−Xαi(t)∥2 ≤
√
1 + λAi and it follows that ∥Xαi(t)∥22 ≤

(1 +
√
1 + λAi)

2. Since supp(αi(t)) ⊆ Si for t ≥ 0 due to Lemma 1,

(1 +
√
1 + λAi)

2 ≥ ∥Xαi(t)∥2 = ∥XSiα
i
Si

(t)∥2

≥ σmin(XSi

⊤XSi)∥α
i
Si

(t)∥22 = σmin(XSi

⊤XSi)∥α
i(t)∥22

Since κ = κ−(Ai) > 0, we have σmin(XSi

⊤XSi
) ≥ κ and it follows that αi(t)

is bounded: ∥αi(t)∥22 ≤ (1+
√
1+λAi)

2

κ . In addition, since ℓ0-norm function ∥ · ∥0
is a semi-algebraic function, therefore, according to Theorem 1 in [1], {αi(t)}t
converges to a critical point of L(αi), denoted by α̂i.

Let v̂ = 2X⊤(Xα̂i − xi) + λṘ(α̂i; b), . For for j ∈ Ŝi, since α̂i is a crit-
ical point of L(αi) = ∥xi −Xαi∥22 + λ∥αi∥0. then ∂Q

∂αi
j
|
αi=α̂i = 0 because

∂∥αi∥0

∂αi
j

|
αi=α̂i = 0 . Note that minj∈Ŝi

|α̂i
j | > b, so ∂R

∂αi
j
|
αi=α̂i = 0, and it follows

that v̂j = 0.

For j /∈ Ŝi, since
dR
dαi

j
(α̂i

j+; b) = λ
b and dR

dαi
j
(α̂i

j−; b) = −λ
b ,

λ
b > maxj /∈Ŝi

| ∂Q
∂αi

j
|
αi=α̂i |,

we can choose the j-th element of Ṙ(α̂i; b) such that v̂j = 0. Therefore, ∥v̂∥2 = 0,

and α̂i is a local solution to the problem (14).
Now we prove that αi∗ is also a local solution to (14). Let v∗ = 2X⊤(Xαi∗−

xi) + λṘ(αi∗; b), and Q is defined as before. For j ∈ S∗
i , since αi∗ is the global

optimal solution to problem (16), we also have ∂Q
∂αi

j
|αi=αi∗ = 0. If it is not the

case and ∂Q
∂αi

j
|αi=αi∗ ̸= 0, then we can change αi

j by a small amount in the

direction of the gradient ∂Q
∂αi

j
at the point αi = αi∗ and still make αi

j ̸= 0,

leading to a smaller value of the objective L(αi).
Note that minj∈S∗

i
|αi

j
∗| > b, so ∂R

∂αi
j
|
αi=α̂i = 0, and it follows that v∗

j = 0.

For j /∈ S∗
i , since

λ
b > maxj /∈Ŝi

| ∂Q
∂αi

j
|αi=αi∗ |, we can choose the j-th element

of Ṙ(αi∗; b) such that v∗
j = 0. It follows that ∥v∗∥2 = 0, and αi∗ is also a local

solution to the problem (14).

1.6 Proof of Theorem 3

Theorem 5 in [2] gives the estimation on the distances between two local solutions
of the capped-ℓ1 regularized problems, based on which we have the following

theorem showing that the sub-optimal solution α̂i obtained by PGD is close to
the global optimal solution to the original ℓ0 problem (16), i.e. αi∗.
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Theorem 3 (Sub-optimal solution is close to the global optimal solution) For

any 1 ≤ i ≤ n, suppose κ−(Ai) > 0 and κ−(|Ŝi ∪ S∗
i |) > κ > 0, and b is chosen

according to (17) as in Lemma 2. Then

∥X(α̂i −αi∗)∥22 ≤ 2κ−(|Ŝi ∪ S∗
i |)

(κ−(|Ŝi ∪ S∗
i |)− κ)2

(18)

( ∑
j∈Ŝi

(max{0, λ
b
− κ|α̂i

j − b|})2 + |S∗
i \ Ŝi|(max{0, λ

b
− κb})2

)
In addition,

∥(α̂i −αi∗)∥22 ≤ 2

(κ−(|Ŝi ∪ S∗
i |)− κ)2

(19)

( ∑
j∈Ŝi

(max{0, λ
b
− κ|α̂i

j − b|})2 + |S∗
i \ Ŝi|(max{0, λ

b
− κb})2

)

Proof. According to Lemma 2, both α̂i and αi∗ are local solutions to problem
(14). By Theorem 5 in [2], we have

∥X(α̂i −αi∗)∥22 ≤ 2κ−(|Ŝi ∪ S∗
i |)

(κ−(|Ŝi ∪ S∗
i |)− κ)2

(
∥θ(|α̂i

Ŝi
, κ)∥22 (20)

+ |S∗
i \ Ŝi|θ2(0+, κ)

)
By the definition of θ,

θ(t, κ) = sup
s
{−sgn(s− t)(Ṙ(s; b)− Ṙ(t; b))− κ|s− t|}

Since t > b, it can be verified that θ(t, κ) = max{0, λ
b − κ|α̂i

j − b|}. Therefore,

∥θ(|α̂i
Ŝi
, κ)∥22 =

∑
j∈Ŝi

(
θ(α̂i

j , κ)
)2

(21)

=
∑
j∈Ŝi

(max{0, λ
b
− κ|α̂i

j − b|})2 (22)

It can also be verified that

θ(0+, κ) = max{0, λ
b
− κb} (23)

So that (18) is proved. Let S
′
= Ŝi ∪ S∗

i , since σmin(X
⊤
S′XS′ ) ≥ κ−(|Ŝi ∪ S∗

i |),
so that ∥X(α̂i−αi∗)∥22 ≥ κ−(|Ŝi∪S∗

i |)∥(α̂i−αi∗)∥22. It follows that (25) holds.

Theorem 3 gives the bound for the ℓ2-distance between the sub-optimal so-
lution α̂i to the global optimal solution αi∗. We present an additional theorem
in this supplementary which applies the bound (25) to show the upper bound

for the support difference Ŝi △ S∗
i = Ŝi \ S∗

i ∪ S∗
i \ Ŝi.
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Theorem 4 (Sub-optimal solution and global optimal solution have bounded
support difference) Under the conditions of Theorem 3, if λ ≤ κb2, then

∥(α̂i −αi∗)∥22 ≤ 2
( κ

κ−(|Ŝi ∪ S∗
i |)− κ

)2

∥α̂i∥22 (24)

Let ci , min{minj∈Ŝi
|α̂ji|,minj∈S∗

i
|α∗

ji|}, then the cardinality of the support

difference |Ŝi∆S∗
i | satisfies

|Ŝi △ S∗
i | ≤

2

c2i

( κ

κ−(|Ŝi ∪ S∗
i |)− κ

)2

∥α̂i∥22 (25)

Note that S∗
i is the global optimal solution to the problem of ℓ0-SSC for point

xi below when λ is the corresponding Lagrangian multiplier,

min
αi

∥αi∥0 s.t. xi = Xαi, αii = 0 (26)

and it follows that αi∗ is almost surely the subspace-sparse representation, i.e.
S∗
i correspond to the data that lie in the same subspace as xi. Let the data

corresponding to Ŝi be XŜi
. Then under the conditions of Theorem 4, XŜi

lie in

the same subspace as xi except for up to 2
c2i

(
κ

κ−(|Ŝi∪S∗
i |)−κ

)2

∥α̂i∥22 points. This

result makes sense if 2
c2i

(
κ

κ−(|Ŝi∪S∗
i |)−κ

)2

∥α̂i∥22 < |Ŝi|, and this inequality holds

if κ can be chosen small enough accordingly. In this sense, Theorem 4 relates
Aℓ0-SSC to the approximate correctness of subspace clustering.

Table 1. Clustering Results on UMIST Face Data

UMIST Face

# Clusters
Measure KM SC SSC SMCE SSC-OMP Aℓ0-SSC

c = 4
AC 0.4846 0.5691 0.4390 0.5203 0.4878 0.5854
NMI 0.2919 0.4351 0.3303 0.3314 0.4678 0.4128

c = 8
AC 0.4347 0.4601 0.4930 0.4695 0.5211 0.7042
NMI 0.5473 0.5087 0.5516 0.5744 0.5626 0.7214

c = 12
AC 0.4529 0.4805 0.5135 0.4955 0.5856 0.6727
NMI 0.6216 0.6145 0.5972 0.6429 0.6615 0.7615

c = 16
AC 0.4278 0.4516 0.4562 0.4747 0.4885 0.6175
NMI 0.6280 0.6455 0.6581 0.6909 0.5936 0.7529

c = 20
AC 0.4275 0.4052 0.4904 0.4487 0.4835 0.6730
NMI 0.6426 0.6159 0.6885 0.6696 0.6310 0.7924

2 More Experimental Results

2.1 Evaluation Metric

Two measures are used to evaluate the performance of the clustering methods,
i.e. the accuracy and the Normalized Mutual Information(NMI) [3]. Let the
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Table 2. Clustering Results on CMU PIE Data

CMU PIE

# Clusters
Measure KM SC SSC SMCE SSC-OMP Aℓ0-SSC

c = 20
AC 0.1320 0.1312 0.2291 0.2315 0.1076 0.3306
NMI 0.1210 0.1302 0.2829 0.3071 0.0734 0.4036

c = 40
AC 0.1044 0.0880 0.2251 0.1903 0.0783 0.3440
NMI 0.1522 0.1449 0.3257 0.3052 0.0914 0.4626

c = 68
AC 0.0845 0.0729 0.2287 0.1733 0.0821 0.2591
NMI 0.1884 0.1789 0.3659 0.3343 0.1494 0.4435
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Fig. 2. Clustering performance with different values of λ, i.e. the weight for the ℓ0-
norm, on the COIL-20 Database. Left: Accuracy; Right: NMI. Note that the perfor-
mance of SSC does not vary with λ since its weighting parameter for the ℓ1-norm is
chosen from [0.1, 1] for the best performance.

predicted label of the datum xi be ŷi which is produced by the clustering method,
and yi is its ground truth label. The accuracy is defined as

Accuracy =
1IΩ(ŷi )̸=yi

n
(27)

where 1I is the indicator function, and Ω is the best permutation mapping func-
tion by the Kuhn-Munkres algorithm [4]. The more predicted labels match the
ground truth ones, the more accuracy value is obtained.

Let X̂ be the index set obtained from the predicted labels {ŷi}ni=1 and X
be the index set from the ground truth labels {yi}ni=1. The mutual information

between X̂ and X is

MI(X̂,X) =
∑

x̂∈X̂,x∈X

p(x̂, x)log2(
p(x̂, x)

p(x̂)p(x)
) (28)

where p(x̂) and p(x) are the margined distribution of X̂ and X respectively,

induced from the joint distribution p(x̂, x) over X̂ and X. Let H(X̂) and H(X)

be the entropy of X̂ and X, then the normalized mutual information (NMI) is
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defined as below:

NMI(X̂,X) =
MI(X̂,X)

max{H(X̂), H(X)}
(29)

It can be verified that the normalized mutual information takes values in [0, 1].
The accuracy and the normalized mutual information have been widely used for
evaluating the performance of the clustering methods [5,6,3].

2.2 Parameter Sensitivity Result on the COIL-20 Database

We investigate how the clustering performance on the COIL-20 Database changes
by varying the weighting parameter λ for Aℓ0-SSC, and illustrate the result in
Figure 2.

2.3 Additional Experimental Results

Table 6 in the paper shows the overall clustering performance of Aℓ0-SSC on the
UMIST Face Database and CMU PIE Face Database. We now show the detailed
clustering performance on the first c clusters of this data set in Table 1 and
Table 2 in this supplementary document. The UMIST Face Database consists
of 575 images of size 112× 92 for 20 people. Each person is shown in a range of
poses from profile to frontal views. CMU PIE face data contains cropped face
images of size 32× 32 for 68 persons, and there are around 170 facial images for
each person under different illumination and expressions, with a total number
of 11554 images.
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