1/22

Epitomic Image Colorization

Yingzhen Yang¹, Xinqi Chu¹, Tian Tsong Ng², Alex Yong-Sang Chia², Jianchao Yang³, Hailin Jin³, Thomas S. Huang¹

 ¹Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
 ² Institute for Infocomm Research, A*STAR, Singapore 138632
 ³ Adobe Research, San Jose, CA 95110, USA

Outline

- Related Work
- Contribution

2 Formulation

- Epitome
- Robust Patch Dissimilarity Measure via Epitome

3 Experimental Results

Image Colorization

- A process of adding color to grayscale images
 - Increasing the visual appeal of images
 - Information illustration in scientific images
- Manual colorization is time consuming and tedious.
- We focus on automatic image colorization that transfers color from the reference image to the grayscale target image.

Introduction $\circ\circ$

Formulation

Experimental Results

References

Image Colorization

Figure 1: Colorize the Nano Mushroom-like structure by our method. From left to right: the reference image, the target image, the colorized target image.

Related Work

- Transferring Color to Greyscale Images (Welsh et al., 2002)
 - Pixel-level matching by luminance value and neighborhood statistics
 - Suffers from spatial inconsistency
- Image Colorization Using Similar Images (Gupta et al., 2012)
 - A cascade feature matching scheme for matching the target superpixels to the reference superpixels
 - Lacks robust to change in pose or orientation

Contribution

- We propose a new automatic image colorization method by epitome, called Epitomic Image Colorization
 - Achieve feature matching robust to both noise and the large change in the pose or orientation of the objects
 - Epitome is a generative model which summarizes raw image patches into a condensed representation.
- A new robust patch dissimilarity measure by epitome and the MRF inference.

- Epitome (Jojic, Frey, & Kannan, 2003) is a generative model which summarizes raw image patches into a condensed representation similar to Gaussian Mixture Models (GMMs).
- In contrast to tradition GMMs, the Gaussian components of epitome can be overlapping with each other.

Figure 2: Examples of the learned epitome

Introduction 00 Formulation

Experimental Results

References

Introduction to Epitome

• The epitome e is obtained by maximizing the log likelihood function:

$$\mathbf{e} = \arg\max_{\hat{\mathbf{e}}} \log p\left(\{\mathbf{Z}_k\}_{k=1}^Q | \hat{\mathbf{e}}\right), \tag{1}$$

Figure 3: Learn the epitome from the reference image. Z_k : patch from the reference image; \mathcal{T}_k : hidden mappings that maps the image patch Z_k to the epitome patch.

Heterogeneous Feature Epitome

- We learn the pixel epitome e^{YIQ}, the dense SIFT epitome e^{SIFT} and the LBP epitome e^{LBP} jointly from the the raw pixel, the dense SIFT feature (Lazebnik, Schmid, & Ponce, 2006) and the rotation invariant Local Binary Pattern (LBP) (Ojala, Pietikainen, & Maenpaa, 2002) of the reference image.
- The heterogeneous feature epitome $\mathbf{e} = (\mathbf{e}^{YIQ}, \mathbf{e}^{SIFT}, \mathbf{e}^{LBP})$

 Introduction
 Formulation
 Experimental Results
 References

 Robust Patch Dissimilarity Measure via Epitome

- In order to match the target patch to the reference patch for color transfer, we need a robust patch dissimilarity measure.
 - We propose a robust dissimilarity measure between the target patch $\hat{\mathbf{Z}}_i$ and the reference patch \mathbf{Z}_j with the heterogeneous feature epitome e learned from the reference image:

$$\mathcal{D}_{\mathbf{e}}\left(\hat{\mathbf{Z}}_{i}, \mathbf{Z}_{j}\right) = 1 - p(\hat{\mathcal{T}}_{i}^{*} | \mathbf{Z}_{j}, \mathbf{e})$$
(2)

where $\hat{\mathcal{T}}_i^*$ is the most probable hidden mapping for $\hat{\mathbf{Z}}_i$:

$$\hat{\mathcal{T}}_{i}^{*} = \operatorname*{arg\,max}_{\hat{\mathcal{T}}_{i}} p\left(\hat{\mathcal{T}}_{i} | \hat{\mathbf{Z}}_{i}, \mathbf{e}\right)$$
(3)

(ロ)、(型)、(目)、(目)、(目)、(2)、(10/22)

• This dissimilarity measure is robust to noise and the large change in the pose or orientation of the objects.

Figure 4: Colorize the cheetah

Introd	
00	

Epitomic Image Colorization

- Use the robust patch dissimilarity measure via epitome to find similar reference patches for each target patch
- Transfer color from the similar reference patch to the target patch
- Use MRF inference to obtain a smooth colorization result

Figure 5: Comparison between colorizing the Nano image with MRF inference (left) or not (right).

Parameter Setting

- The area of the heterogeneous feature epitome is no more than $\frac{1}{4}$ of that of the reference images.
- The patch size is 9×9 or 12×12 .

Introduction 00 Formulation

Experimental Results

References

Colorization Results

learned epitome

reference image

target image

Welsh et al.

Gupta et al.

our result.

Experimental Results

References

Colorization Results Cont.

learned epitome reference image

target image

Welsh et al.

Gupta et al.

our result.

Introduction 00 Formulation

Experimental Results

References

Colorization Results Cont.

Welsh et al.

Gupta et al.

our result.

・ロ ・ ・ (日 ・ ・ 三 ・ ・ 三 ・ つ へ (* 16 / 22

Experimental Results

References

Colorization Results Cont.

Welsh et al.

Gupta et al.

our result.

Experimental Results

References

Colorization Results Cont.

learned epitome

reference image

target image

Welsh et al.

Gupta et al.

our result.

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

Experimental Results

References

Colorization Results Cont.

Introd	

Thank you!

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < 22

Gupta, R. K., Chia, A. Y. S., Rajan, D., Ng, E. S., & Huang, Z. (2012). Image colorization using similar images. In Acm multimedia (p. 369-378).

Formulation

- Jojic, N., Frey, B. J., & Kannan, A. (2003). Epitomic analysis of appearance and shape. In *Iccv* (p. 34-43).
- Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In *Computer vision and pattern* recognition, 2006 ieee computer society conference on (Vol. 2, p. 2169 - 2178).

Reference II

- Ojala, T., Pietikainen, M., & Maenpaa, T. (2002, jul). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 24(7), 971 -987.
- Welsh, T., Ashikhmin, M., & Mueller, K. (2002). Transferring color to greyscale images. ACM Trans. Graph., 21(3), 277-280.