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Abstract

Photo collage is an effective representation for photo
summarization and visualization. However, its practical us-
age is limited by its high computational cost. In this pa-
per, we present efficient optimization techniques based on
a novel formulation on markov random fields and several
insights unexploited by previous approaches. Our method
achieves up to hundreds-fold performance improvement,
and user/application specific constraints can be easily in-
tegrated. We present new applications including interactive
collage refinement and dynamic collage for photo brows-
ing. Preliminary evaluation and user study indicates that
our approach extends the usability of photo collage.

1. Introduction

With an explosively growing number of digital photos
nowadays, photo collage has recently been gaining atten-
tion in academia (vision [15], graphics [9], multimedia [16],
user interface [2]) and industry [8] to meet the increasing
needs for photo browsing/visualization. It is a compact
and informative representation of photos arranged on a two-
dimensional canvas. Overlap between photos is allowed to
better utilize the space. Figure1 shows some examples.

Given a photo collection, it takes three stages to cre-
ate a photo collage: 1)photo selection: high quality and
representative photos are selected to be shown; 2)saliency
computation: important regions in the photos are identified;
3) arrangement optimization: photo arrangement is opti-
mized towards an objective function. Various vision tech-
niques can benefit these tasks, such as photo quality evalua-
tion [7], representative photo selection [11], image saliency
analysis [6], face detection [13] and discrete optimization
methods [12]. Based on such components, previous meth-
ods [15, 9] automatically compute a photo collage by op-
timizing an energy function formulated with certain objec-
tive criteria,e.g., maximizing visible visual saliency. Their
results prove to be a better summarization of photos than
previous methods [8, 10].

Evaluation of a photo collage could, however, depend
on certain subjective criteria or even vary with users. Such
criteria usually depends on high level photo content and is
hard to be pre-defined or identified,e.g., ‘my photos must
be included’, ‘the same face is shown only once’, or ‘my
favourite photo should be in the center.’ In general, such
goals cannot be realized by optimizing a pre-defined objec-
tive function. A natural solution is to involve user interac-
tion [2, 16]. The user study conducted by an automatic sys-
tem [9] also indicates needs, such as ‘I’d also like to include
a specific image.’

An interactive system should be able to 1) incorporate
user inputs into the optimization framework, and 2) respond
to the user in a short time. An example is shown in Figure1.
Previous approaches [15, 9] are unsuitable for such a task
because it is unclear how to incorporate user constraints in
their problem formulation without altering the optimization
method. The number of photos that could be used is also
small given a short time for optimization (around 25 photos
takes a few seconds).

This paper presents a novel and efficient optimization
framework for photo collage to address the above issues.
Our approach is inspired by the recent development of
energy minimization techniques on markov random fields
(MRFs) [1, 4, 17, 14] and their success for various com-
puter vision problems [3, 5, 12]. Using similar criteria
as in [15, 9], the photo collage optimization problem is
re-formulated on MRFs. We show that the problem is in
general computationally intractable due to its inherent high
complexity. Based on several new insights unexploited be-
fore, we develop efficient approximate optimization tech-
niques and obtain up to hundreds-fold performance im-
provement (Figure5). Consequently, more photos can be
easily used (1 second optimization for50 photos) and user
specific constraints can be conveniently integrated.

Two new applications are developed.Interactive col-
lage allows a user to refine the result at a responsive time
with various actions.Dynamic collagecreates a continu-
ous browsing experience of an infinite number of sequential
photos,e.g., web search images. Preliminary evaluation in-
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result of a previous approach (7 sec) result of our approach (3.6+0.3 sec) refined result after dragging(0.3 sec)

Figure 1. Three photo collages of the same photo set. Left: result of the method [15]. Middle: result of our approach (pre-computation=3.6
sec, optimization=0.3 sec). Their visual quality is similar, yet such evaluations could be user-dependent,e.g., the user (the girl in the
middle) finds it unsatisfactory and wants to move her picture to the center as indicated by the arrow. Right: refined result with our approach
in responsive time (0.3 sec).

dicates that these applications extend the usability of photo
collage (much faster, easy to edit, able to use more photos).

2. Problem Formulation

In this paper, we focus on the arrangement optimization
problem. We assume all input photos are of high quality
and representative. Unlike previous approaches [15, 9, 16]
that are limited to use rectangular regions-of-interest (es-
sentially cropped photos) to represent important regions,
we adopt a general model that uses pixel-wise saliency val-
ues. Multiple (probably non-equally weighted) important
regions (e.g., several faces) can be naturally represented and
any saliency computation method can be used. Our imple-
mentation of the saliency computation is illustrated in Fig-
ure2.

Given N input photos, their saliency maps and a two-
dimensional canvas, our goal is to compute the optimal con-
figurationX = {xi}N

i=1, wherexi is thei-th photo’s state,
including positionpi, rotation angleθi and layer indexli
that determines the order of photo placement. The opti-
mization problem is formulated using the following objec-
tive criteria. (1)Overlap: Overlap between photos is mini-
mized so the visible information is maximized. This intro-
duces a termLi(X) that measures the lost saliency ofi-th
photo. Saliency information is lost when the photo is ei-
ther out of canvas or occluded by other photos with higher
layers. Therefore we have

Li(X) = Ci(xi) + Oi(xi, {xk|lk > li}), (1)

where termsC andO correspond to the out-of-canvas and
occlusion cases, respectively.
(2) Layer uniqueness: Each photo has a unique layer index.
This introduces a termU(X) which is∞ if any two photos
have the same layer and0 otherwise. For technical reasons
explained later, it is defined as a set of terms involving all

photo pairs, each of which is a Potts model,

U(X) =
∑
i,j

δ(li − lj) · ∞,

whereδ(·) is the delta function.
(3)Angular DiversityUsing diverse rotation angles for adja-
cent photos is visually appealing and favorable [8, 15]. This
is realized by imposing a penaltywd for overlapping photos
with the same angle, giving rise to the following term

D(X) = wd

∑
i,j

I(xi, xj)δ(θi − θj), (2)

where I() is 1 if the i-th andj-th photos overlap and0 oth-
erwise. The parameterwd is empirically set as a small con-
stant by default, yet can be easily adjusted to obtain differ-
ent visual effects, as illustrated in Figure6.

Therefore, our goal is to minimize the energy function

E(X) =
N∑

i=1

C(xi)+
N∑

i=1

Oi(xi, {xj |lj > li})+D(X)+U(X).

(3)
No user constraints are considered yet because they are

hard to be pre-defined. As shown later in sections5 and6,
our optimization framework is flexible to incorporate cer-
tain additional energy terms/constraints to support different
application scenarios.

Challenges and our solutionThere are two major chal-
lenges in optimizing Eq. (3). Firstly, the occlusion termOi

is multi-variate and its exact evaluation is very expensive.
Previous methods [15, 9] alleviate this problem by using
a simple rectangular saliency model. Polygon intersection
is used in [15] to evaluateOi and a rectangle-packing prob-
lem is solved in [9] to avoid direct evaluation. Secondly, the
number of variable values is large. LetCp, Cr andCl de-
note this number for position, rotation and layer parameters,



Figure 2. Illustration of our implementation of the per-pixel
saliency model. Left: a simplified version of the method in
[6] is used to compute a salient region(yellow rectangle). Viola
and Jones’s face detector [13] is used to find faces(green rectan-
gle). Right: resulting saliency map where higher intensity indi-
cates larger weight. The underlying parametric form and relative
weights are empirically determined and work well in our experi-
ments. The gaussian distribution is used in order to tolerate the
inaccuracy and uncertainty of general salient object detection [6].

Cp is typically millions (for a thousands by thousands can-
vas),Cr is a few (discretized angles) andCl is N (number
of photos). Optimization in such a huge solution space is
in general computationally intractable. Previous techniques
[15, 9] use effective search strategies (Markov chain Monte
Carlo in [15] and divide-and-conquer in [9]) but still have
super linear complexity.

By contrast, our approach uses a general saliency model,
is much faster and runs in linear time in the number of pho-
tos (see Figure5). It is based on efficient energy minimiza-
tion methods for MRFs [12] and several problem insights
unexploited before.

Minimizing energy functions in the form of Eq. (3)
can be justified in terms of maximum a posteriori es-
timation of MRFs [12]. Powerful energy minimiza-
tion techniques have been developed in recent years,
such as graph cuts [1, 4] and message passing meth-
ods [17, 14]. They have been successfully applied
to various vision problems, such as stereo/motion esti-
mation and image segmentation/stitching/denoising/super-
resolution/inpainting [3, 5, 12]. They prove to be able to
obtain strong local optimal solutions very efficiently for en-
ergy functions with only unary and binary terms.1

A major difficulty when applying such methods is that
the termOi is multi-variate. Fortunately, it turns out that
an approximation with binary terms is reasonable for our
problem,

Oi(xi, {xk|lk > li}) ≈
∑
lj>li

O(xi, xj), (4)

whereO(xi, xj) is the lost information in thei-th photo oc-
cluded by thej-th photo. Our observation is that,overlap

1Although methods for high-order markov random fields exist, they do
not satisfy our performance goal and are not considered here.
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Figure 3. Illustration of approximation in Eq.(4), which introduces
errors when the same photo portion is occluded more than once.
Left: Photo 1 is occluded by photo 2 and 3. Its occluded infor-
mation in white region(better viewed in color) is counted twice
by Eq.(4). This error is small in a nearly optimal configuration
since overlap between photos is also small. Right: plot of accurate
and approximate energies during the iterative optimization from a
random initialization using50 photos. The error is large at the be-
ginning and becomes much smaller after a few iterations, showing
that Eq.(4) is an asymptotically good approximation.

between photos becomes smaller during an iterative opti-
mization process and this makes Eq.(4) an asymptotically
good approximation. This observation is illustrated and ex-
perimentally verified in Figure3.

An approximate energy function with only unary and
binary terms is obtained via Eq.(4), but direct optimiza-
tion is still infeasible,e.g., α-expansion graph cut [1] needs
C = Cp × Cr × Cl iterations and message passing meth-
ods [17, 14] result in message vectors of lengthC, which are
clearly unaffordable. Our approach is inspired by the obser-
vation that,the terms in energy function Eq.(3) are loosely
correlated and a natural decomposition gives rise to several
smaller and easier sub-problems.Specifically, the position,
rotation and layer parameters constitute three subsets and a
sub-problem is defined as minimizing the energy by vary-
ing one subset while keeping the other two fixed. The re-
sulting energy function of each sub-problem is greatly sim-
plified, e.g., termU(X) only appears in layer optimization
andD(X) vanishes in layer optimization.

The three subset parameters are alternately optimized
within their own subspaces until the energy cannot be de-
creased, and a local optima in original space is obtained.
The effectiveness of such a strategy heavily depends on how
large the subspace of each sub-problem is. Considering an
extremely simple case, the well known Iterated Conditional
Modes method, it only updates one variable each time and
computes a weak local optima since the result is extremely
sensitive to the initial configuration, especially for high-
dimensional spaces with a huge number of local optima.
Our approach computes a strong local optima in the sense
that a large subspace is used and all photos are simultane-
ously updated. The energy decreases fast and converges in
a few iterations, as illustrated in Figure3.



Position Optimization Rotation Optimization Layer Optimization

Figure 4. Position, rotation, and layer parameters are optimized in a sequential manner until convergence.

3. Optimization

Given an arbitrary initial configuration̂X, it is updated
by alternately optimizing one of the three parameter sets,
i.e., positionXp, rotationXr and layerXl, while fixing the
other two. For example, the position optimization problem
is minXp Ep(Xp) = E(Xp ∪ X̂r ∪ X̂l). The update is ter-
minated until the energy function in Eq. (3)(4) cannot be
decreased any more. A graphical model is used to repre-
sent the energy function with only unary and binary terms,
where each node represents a variable and each edge con-
necting two variable nodes corresponds to the binary term
depending on the variables. The alternate optimization pro-
cess and graphical models are illustrated in Figure4.

Among various optimization methods [12], we use loopy
belief propagation (LBP) [17] (section3.1) to optimize po-
sition (section3.2) and rotation (section3.3) parameters be-
cause of its simplicity compared with tree re-weighted mes-
sage passing [14] and its ability to handle general energy
functions compared with graph cuts [4]. Although LBP is
also applicable for layer optimization, it turns out that this
sub-problem can be effectively solved by a variant of the
topological sort algorithm (section3.4).

3.1. Loopy Belief Propagation

Denoting unary terms asS(xi) and binary terms as
B(xi, xj), belief propagation method works by propagating
and updating messagesmij along edges(i, j) as follows,

mij(xj) = min
xi

{S(xi) + B(xi, xj) +
∑

k∈N (i)\j

mki(xi)},

(5)
whereN (i) is the set of neighbors of nodei. The marginal
of variablei is estimated as

bi(xi) = S(xi) +
∑

k∈N (i)

mki(xi), (6)

where beliefbi(xi) roughly states how likely the variable
takes valuexi. Therefore, the MAP(maximum a posteri-
ori) estimate2 is obtained asxMAP

i = argxi
min bi(xi).

2The terminologies are for probability distributions. They are unam-
biguously used here since maximizing posterior is equivalent to minimiz-

Eq.(5) is known as max-product algorithm. Replacingmin
with

∑
in Eq.(5) gives rise to sum-product algorithm and

MMSE(minimum mean-squared error) estimation is ob-
tained. When the underlying graph is acyclic, marginals in
Eq. (6) are exactly computed by one pass of message propa-
gation. When the graph contains loops, messages are itera-
tively updated, known as loopy belief propagation (LBP).
Although the convergence is not guaranteed, LBP works
quite well for many computer vision problems [3, 12]. Max-
product LBP is used in our implementation. We observed
that sum-product LBP is slower but achieves similar results.

3.2. Position optimization using LBP

In this step, the energy functionEp(Xp) =
∑

i C(xi) +∑
i,j O(xi, xj)+D(X) is optimized. Allowing each photo

to take all possible locations on the canvas is unfavorable,
because this gives rise to binary terms for all photo pairs and
a complete graph, which is too expensive. It also causes
drastic layout changes that are unfavorable for the appli-
cations in sections5 and6, where the visual coherency of
photo layout should be retained.

Based on the above considerations, the position param-
eterpi is constrained to be within a neighborhood of cur-
rent positionp̂i, pi ∈ [p̂i − ∆−pi, p̂i + ∆+pi]. Since dis-
tant photos cannot overlap, the number of binary terms is
greatly reduced and the resulting graph is sparse. LetGi be
the set of discrete samples in the range[−∆−pi,∆+pi] and
pi ∈ {p̂i +∆pi|∆pi ∈ Gi}, the problem becomes to find an
optimal value for each∆pi from Gi. LBP is used to solve
this discrete optimization problem.

The computational performance depends on the discrete
samplingG, since message update in Eq. (5) is computed
in O(|Gi||Gj |) time. Typically |G| is large and this step ac-
counts for most of the computation time (more than95%
in the final implementation). Section4 discusses various
speedup techniques for this step, as well as how to set the
range parameters∆+(−)pi and discrete samplingGi.

ing energy in− log domain.



3.3. Rotation optimization using LBP

Using rotated photos is motivated for aesthetic reasons
[8, 15]. Empirical user study shows that excessive rotation
degrades the visual quality and a small set of rotation angles
{k∆θ} are used. In our implementation, these parameters
are empirically set ask = [−3..3] and∆θ = 5 degrees, yet
could be easily adjusted by the user.

LBP is used to minimize the energy functionEr(Xr) =∑
i C(xi) +

∑
i,j O(xi, xj) + D(X). Since photos are ro-

tated and only close ones could overlap, the resulting graph
is sparse. The number of possible angular values is also
small, and this step is very fast (2%− 3% of total time).

3.4. Layer optimization using topological sort

In this step, energy functionEl(Xl) =
∑

i,j O(xi, xj)+
U(X) is minimized. Although LBP could be used, message
update in Eq. (5) takesO(N2) time and is inefficient for
a largeN . Instead, a variant of the topological sort algo-
rithm is developed based on the observation that,overlap-
ping photo pairs that define the occlusion terms are fixed
during layer optimization, and only relative layer order be-
tween such photo pairs is important. The algorithm is ex-
tremely fast and running time is negligible.

A weighted and directed graph is created where each
edgee = (i, j) corresponds to thei-th andj-th photos that
overlap. Letw(i) andw(j) be the summed saliency values
in the overlapped area of thei-th andj-th photos, respec-
tively, the edge directionde indicates the favored layer or-
der, i → j if w(i) < w(j), or j → i otherwise. The edge
weight we = |w(i) − w(j)| is the amount of additional
saliency loss when the directionde is violated.

If the directed graph is acyclic, all edge directions are
satisfied by following a node ordering generated by topo-
logical sort,i.e., a node with no incoming edge (in-edge) is
always visited before other nodes that have in-edges, and re-
moved from the graph together with all its outgoing edges.
While our graph is cyclic, instead of trying to find a node
with no in-edge, the node with the smallest summed weights
of in-edges is always visited first. Its in-edges are then dis-
carded and the standard topological sort is applied. Con-
sequently, the lost saliency in these discarded in-edges is
minimized and the optimal node ordering is generated. The
layers are then determined accordingly.

4. Fast computation methods

LBP for position optimization is the most expensive step
(more than95% of total time). The bottleneck is the itera-
tive message update in Eq. (5). Various speedup techniques
are used for this step, as summarized in Table1.
Integral Image The terms in Eq. (1) are summed saliency
values over the intersection of two rectangles,i.e., thei-th
photo and canvas forC(xi), and thei-th andj-th photos for

technique speedup factor for computing

integral image hundreds/thousands C(xi),
O(xi, xj)

vectorization several vector add/min
Priority BP faster convergence
multi-scale
grid sampling

thousands(dozens) O, I(xi, xj)
(vector add/min)

quotient set
for dimension
reduction

O(n2), n is number of
samples onx(y) axis

O(xi, xj),
I(xi, xj)

Table 1. Summary of speedup techniques in section4.

O(xi, xj). For upright photos, this intersection is an upright
rectangle and the sum is computed in a constant time us-
ing an integral image [13]. For rotated photos, new upright
rectangular saliency maps are created as the bounding box
of rotated original saliency maps, with empty areas filled
with zeroes. New integral images are then created and used
in the same way. All the integral images are pre-computed
according to the discretized rotation angles.
Vectorization SIMD instructions (SSE2 in our implementa-
tion) are used to exploit the parallelism and obtain a several-
fold speed-up for vector add/min computation in Eq.(5).
Priority belief propagation It is observed in [5] that firstly
propagating more informative messages from nodes that are
more confident about its labels gives rise to faster conver-
gence. The sequential message update according to node
priority is calledPriority BP. It is shown to be effective for
image completion [5], where node priorities are heuristi-
cally determined using node beliefs.

In our problem, it is observed that,collage update usu-
ally starts from a “trigger” photo (by user interaction) and
propagates to others. For example, when a photo is moved,
it first squeezes nearby photos to reduce their overlaps. Par-
allel message update for distant photos is ineffective since
they are still in a near-optimal configuration. Priority BP
is used whenever a “trigger” photõI can be identified. The
photo priorities are defined according to their distances toĨ,
that is, nearer photos have higher priorities. It is observed
that Priority BP decreases the energy faster than standard
BP in the same number of iterations.
Multi-scale grid sampling The range parameters
{∆+(−)p} and the discrete sampleG are crucial for
running performance. A multi-scale strategy is adopted.
Let level zero be the finest scale, at levelk the sam-
pling step is set as{sk} and the range parameters are
∆+(−)

k pi = (sk+1, sk+1). The position parameters are
optimized in a coarse-to-fine manner using the solution of
the previous level as the initial guess. The complexity of a
naive approach at levelK is O(s4K+4), which is reduced
toO(Ks4) in the multi-scale approach. The sampling step
s and maximum levelK determine how large the photos
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Figure 5. Running time of our approach(left) and the method
in [15](right) using different number of images. Our approach ob-
tains dozens- to hundreds-fold speedup, and has linear complexity
in the number of photos.

are allowed to move and how many rounds of optimization
are needed. After testing several different combinations,
we founds = 3 and K = 3 to be a good trade-off. A
reasonably large movement can be made in a short time.
Quotient Set for Dimension Reduction Naive compu-
tation of O(xi, xj) and I(xi, xj) in Eq. (1)(2) takes
O(|Gi||Gj |) time. Based on the observation that,those
terms depend on relative position−−→pipj instead of ab-
solute positionspi and pj , the position pair setP =
{(∆pi,∆pj)|∆pi ∈ Gi,∆pj ∈ Gj} is partitioned into
equivalence classes based on the equivalence relation

(∆p1,∆p2) ∼ (∆p3,∆p4) iff
−−−−−→
∆p1∆p2 =

−−−−−→
∆p3∆p4.

For each equivalence classP in the quotient setQP =
P/∼(P ∈ QP, P ⊂ P), those terms are computed only
once for all(∆pi,∆pj) ∈ P . The complexity is reduced
from O(|Gi||Gj |) to O(|QP|). Let |Gi| = |Gj | = n2 (n
uniformly sampled positions in the two axes), it turns out
|QP| = O(n2). Such aO(n2) (typically around10) fac-
tor saving is significant since the computation ofO(xi, xj)
accounts for a large portion (about20%) of the total time.

The quotient setQP is uniquely determined by discrete
samplesGi andGj . It is computed only once for each such
sample pair.
Performance SummaryWith the above techniques, the op-
timization is very fast. As shown in Figure5, once the
pre-computation (of rotated saliency maps and integral im-
ages) is done, optimization is performed in a responsive
time (0.5− 2 seconds for50 photos on a Pentium4 3.2 GHz
cpu). Running time is linear in the number of message up-
dates (edges), which isO(N) when photos are evenly dis-
tributed (there are roughly2N edges for adjacent cells in a√

N ×
√

N grid), as experimentally verified in Figure5.

5. Interactive Collage

“Interactive collage” is an application by which a user
can refine the result in a responsive time. Various user
actions are supported and integrated into the optimization
framework. The result is then updated by restarting the op-
timization. Figures1, 6 and7 show several examples.

Photo add/removalThis is realized by adding/removing
corresponding variables in the energy function (Figure6).
Photo moveA user dragsi-th photo to a locationp∗i , im-
plying a positional prior that favorspi closer top∗i . This is
realized by adding a unary termwi

p||pi − p∗i || into Eq. (3).
The weightwi

p is empirically determined as follows. When
the drag distance is small (the underlying graph topology is
not changed), it is interpreted that the user wants to make
a local fine adjustment, and a largewi

p is used to realize
this intent. When the drag distance is large (the underlying
graph topology is changed), it is interpreted that the user
wants to make a large scale layout change (Figure1), and a
smallwi

p is used.
Send photo to front/backA common operation is to send an
occluded photo to front. This is realized as a hard constraint
in the layer optimization. The photo is assigned a fixed layer
index (e.g., N to be on the top) and removed from the graph
during the topological sort optimization.
Add/modify a salient objectThis is necessary when impor-
tant photo regions are not correctly identified,e.g., a face is
miss-detected. This is realized by re-generating the corre-
sponding saliency maps and integral images.
OthersThe user can change parameters (Figure6) or initial-
ization (Figure7) to achieve different effects.

Comparison with previous approachesAs stated, our
contribution is a novel optimization framework that handles
an objective energy function and subjective user constraints
in a consistent and efficient manner. To the best of the au-
thor’s knowledge, “interactive collage” is the first applica-
tion that performs interactive refinement within an energy
minimization framework.

There are other interactive collage systems [2, 16]. They
are limited to use a pre-defined template canvas that only
takes a few photos, because a large number of photos
will need a formidable number of templates when different
photo sizes/aspect ratios are considered. The arrangement
optimization problem is significantly simplified with only a
few possible locations. The expressiveness and diversity of
a collage representation is therefore sacrificed.

Approaches in [15, 9] also solve energy minimization
problems and compute global optimal solutions, at the cost
of using simpler saliency models and slower performance,
as analyzed before. Nevertheless, it is arguable to claim that
those results are ‘best’ from a user’s point of view since
such evaluation is highly subjective and user-dependent.
The necessity of involving user interaction to make a good
photo collage has been well justified in [2, 16] and the user
study in [9]. Similarly, we cannot compare those results in
Figures6 and7 in terms of their energies.



an initial result using angular diversityafter  replacing with

Figure 6. Interactive photo collage. From a random initialization, a user obtains the photo collage result (left) without using the angular
diversity term by settingwd = 0. The user then removes two photos (indicated by ‘X’) since they are similar to other photos in the collage.
He then adds two new photos (indicated by ‘O’) to obtain another result (middle). If more visual diversity is desired, the user can adjust
wd to obtain another result (right). The whole process is finished in a few seconds.

from a random initialization from an intentional initialization
Figure 7. Given a sports photo collection with different categories (‘running’, ‘skating’,...), as indicated by different colors (middle), a user
obtains a collage result (left) from a random initialization (middle top). If he favors a different style,e.g., photos in the same category are
close to each other, he can easily create such a result (right) from an intentional initialization (middle bottom) where photos in the same
category are grouped together and different categories are placed separately (e.g., ‘running’ on the top and ‘bicycle’ on the right). Note
that it is easy to create such an initialization if appropriate meta data (e.g., photo’s tagging) are available. It takes a few seconds to generate
both results.

6. Dynamic Collage

The number of used photos is limited by the spatial di-
mension of the canvas. The efficient optimization frame-
work naturally exploits the temporal dimension to break
the limit. The resulting application, called “dynamic col-
lage”, updates the collage with continuous addition/removal
of photos. It achieves a spatially compact and temporally
coherent browsing experience of (infinite) sequential input
photos,e.g., web search images or streaming video frames.
Figure8 shows an example of dynamic collage application.

Drastic motion during the dynamic update is visually un-

pleasant. Layer parameters are fixed based on photos’ ar-
rival order. Temporal smoothness prior is introduced to re-
tain visual coherency by adding the following terms into
Eq. (3) for optimization at the timet,∑

i

wsr||θt
i−θt−1

i ||+
∑
i,j

I(pt−1
i , pt−1

j )wsp||
−−→
pt

ip
t
j−
−−−−−→
pt−1

i pt−1
j ||.

The first term penalizes severe rotation change and is han-
dled in rotation optimization. The second term encourages
the relative position of two overlapped images to be stable
and prohibits large movement. This term is handled in the



Added image Image to be removed in the next state

Figure 8. Dynamic photo collage achieves temporally coherent and spatially compact image browsing experience. Photo collage is dynam-
ically updated by replacing old images with new ones and image transitions are smoothly rendered.

position optimization step and computed in a similar way
as the occlusion term. The weightswsr andwsp are empir-
ically set as small constants.

User StudyA user study is performed to evaluate the ef-
fectiveness of dynamic collage (DC) representation for pho-
tos. Two other approaches are used for comparison: a sim-
ple slideshow (SS) where photos are shown one by one, and
a slideshow of collages (SC) where sequential photo col-
lages are shown one by one. Three videos with the same
length are created using the three methods to display a hun-
dred high quality photos of buildings, natural scenes, and
people. Seventeen users were asked to watch the three
videos in a random order and answer the following ques-
tions with a score from 1 (definitely no) to 5 (definitely yes).

Q1. Is the presentation visually pleasing? DC(3.9),
SC(3.3), SS(2.4)

Q2. Is the display layout good? DC(3.4), SC(3.3),
SS(not applicable)

Q3. Are you willing to use it,e.g., as a screen saver?
DC(4.0), SC(3.6), SS(3.1)

Results show that dynamic collage makes a noticeable
improvement over the other two methods and is potentially
useful for photo browsing/visualization tasks.

7. Discussions

Our approach is based on a novel formulation on markov
random fields and several problem specific insights. It is

tuned to achieve a high performance and improve the usabil-
ity of photo collage. The underlying ideas for approximate
optimization, however, could be useful for other problems,
e.g., removal of complicated but unimportant factors in the
energy function and decomposition of a large problem into
several small ones. The formulation of various user spe-
cific constraints and prior terms would be helpful for other
interactive systems and photo based applications.

This paper is focusing on the algorithmic aspect (ar-
rangement optimization stage) instead of developing a com-
prehensive new system. Such a task would require system-
atic investigation of all three stages and a thorough user
study considering various options. This is beyond the goal
of this paper.

References

[1] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 23(11):1222–1239,
2001. 1, 3

[2] N. Diakopoulos and I. Essa. Mediating photo collage au-
thoring. InProceedings of ACM symposium on User inter-
face software and technology, pages 183–186, New York,
NY, USA, 2005. ACM. 1, 6

[3] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learn-
ing low-level vision. International Journal of Computer Vi-
sion, 40(1):25–47, 2000.1, 3, 4



[4] V. Kolmogorov and R. Zabin. What energy functions can be
minimized via graph cuts?IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2004. 1, 3, 4

[5] N. Komodakis and G. Tziritas. Image completion using
global optimization. InProc. of Computer Vision and Pat-
tern Recognition (CVPR), 2006. 1, 3, 5

[6] T. Liu, J. Sun, N. N. Zheng, X. Tang, and H.-Y. Shum. Learn-
ing to detect a salient object. InProc. of Computer Vision and
Pattern Recognition (CVPR), 2007. 1, 3

[7] Y. Luo and X. Tang. Photo and video quality evaluation:
Focusing on the subject. InProceedings of European Con-
ference on Computer Vision (ECCV), 2008. 1

[8] Picasa. http://picasa.google.com/.1, 2, 5
[9] C. Rother, L. Bordeaux, Y. Hamadi, and A. Blake. Autocol-

lage. InProceedings of ACM SIGGRAPH, 2006. 1, 2, 3,
6

[10] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake. Digital
tapestry. InProc. of Computer Vision and Pattern Recogni-
tion (CVPR), 2005. 1

[11] I. Simon, N. Snavely, and S. M. Seitz. Scene summarization
for online image collections. InProceedings of International
Conference on Computer Vision (ICCV), 2007. 1

[12] R. Szeliski, R. Zabin, D. Scharstein, O. Veksler, V. Kol-
mogorov, A. Agarwala, M. Tappen, and C. Rother. A com-
parative study of energy minimization methods for markov
random fields. InProceedings of European Conference on
Computer Vision (ECCV), 2006. 1, 3, 4

[13] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. InProc. of Computer Vision and
Pattern Recognition (CVPR), 2001. 1, 3, 5

[14] M. Wainwright, T. Jaakkola, and A. Willsky. Tree-
reweighted belief propagation algorithms and approximate
ml estimation via pseudo-moment matching.AISTATS, 2003.
1, 3, 4

[15] J. Wang, J. Sun, L. Quan, X. Tang, and H.-Y. Shum. Picture
collage. InProc. of Computer Vision and Pattern Recogni-
tion (CVPR), 2006. 1, 2, 3, 5, 6

[16] J. Xiao, X. Zhang, P. Cheatle, Y. Gao, and C. Atkins. Mixed-
initiative photo collage authoring. InProceedings of ACM
Multimedia, 2008. 1, 2, 6

[17] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Understanding
belief propagation and its generalizations. pages 239–269,
2003. 1, 3, 4


